1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::core::{ArgminFloat, Error, SendAlias, SyncAlias};
#[cfg(feature = "rayon")]
use rayon::prelude::*;
use std::collections::HashMap;

/// Wrapper around problems defined by users.
///
/// Keeps track of how many times methods such as `apply`, `cost`, `gradient`, `jacobian`,
/// `hessian`, `anneal` and so on are called. It is used to pass the problem from one iteration of
/// a solver to the next.
#[derive(Clone, Debug, Default)]
pub struct Problem<O> {
    /// Problem defined by user
    pub problem: Option<O>,
    /// Keeps track of how often methods of `problem` have been called.
    pub counts: HashMap<&'static str, u64>,
}

impl<O> Problem<O> {
    /// Wraps a problem into an instance of `Problem`.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::Problem;
    /// # use std::collections::HashMap;
    /// #
    /// # #[derive(Eq, PartialEq, Debug)]
    /// # struct UserDefinedProblem {};
    /// #
    /// let wrapped_problem = Problem::new(UserDefinedProblem {});
    /// #
    /// # assert_eq!(wrapped_problem.problem.unwrap(), UserDefinedProblem {});
    /// # assert_eq!(wrapped_problem.counts, HashMap::new());
    /// ```
    pub fn new(problem: O) -> Self {
        Problem {
            problem: Some(problem),
            counts: HashMap::new(),
        }
    }

    /// Gives access to the stored `problem` via the closure `func` and keeps track of how many
    /// times the function has been called. The function counts will be passed to observers labeled
    /// with `counts_string`. Per convention, `counts_string` is chosen as `<something>_count`.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{test_utils::TestProblem, Problem, CostFunction};
    /// # let mut problem = Problem::new(TestProblem::new());
    /// # let param = vec![1.0f64, 0.0];
    /// let cost = problem.problem("cost_count", |problem| problem.cost(&param));
    /// # assert_eq!(problem.counts["cost_count"], 1)
    /// ```
    ///
    /// This is typically used when designing a trait which optimization problems need to implement
    /// for certain solvers. For instance, for a trait `Anneal` used in Simulated Annealing, one
    /// would write the following to enable the solver to call `.anneal(...)` on an `Problem`
    /// directly:
    ///
    /// ```
    /// # // needs to reimplement Problem because doctests run in dedicated crate where it is not
    /// # // possible to `impl` a type from another crate.
    /// # // Probably somewhat related to https://github.com/rust-lang/rust/issues/50784
    /// # use argmin::core::Error;
    /// # use std::collections::HashMap;
    /// #
    /// # pub struct Problem<O> {
    /// #     pub problem: Option<O>,
    /// #     pub counts: HashMap<&'static str, u64>,
    /// # }
    /// # impl<O> Problem<O> {
    /// #     pub fn problem<T, F: FnOnce(&O) -> Result<T, Error>>(
    /// #         &mut self,
    /// #         counts_string: &'static str,
    /// #         func: F,
    /// #     ) -> Result<T, Error> {
    /// #         let count = self.counts.entry(counts_string).or_insert(0);
    /// #         *count += 1;
    /// #         func(self.problem.as_ref().unwrap())
    /// #     }
    /// # }
    /// pub trait Anneal {
    ///     type Param;
    ///     type Output;
    ///     type Float;
    ///
    ///     fn anneal(&self, param: &Self::Param, extent: Self::Float) -> Result<Self::Output, Error>;
    /// }
    ///
    /// impl<O: Anneal> Problem<O> {
    ///     pub fn anneal(&mut self, param: &O::Param, extent: O::Float) -> Result<O::Output, Error> {
    ///         self.problem("anneal_count", |problem| problem.anneal(param, extent))
    ///     }
    /// }
    ///
    /// // ...
    ///
    /// # struct TestProblem {}
    /// # impl Anneal for TestProblem {
    /// #     type Param = ();
    /// #     type Output = ();
    /// #     type Float = f64;
    /// #
    /// #     fn anneal(&self, param: &Self::Param, _extent: Self::Float) -> Result<Self::Output, Error> {
    /// #         Ok(())
    /// #     }
    /// # }
    /// # let mut problem = Problem { problem: Some(TestProblem {}), counts: HashMap::new() };
    /// # let param = ();
    /// let new_param = problem.anneal(&param, 1.0f64);
    /// # assert_eq!(problem.counts["anneal_count"], 1)
    /// ```
    ///
    /// Note that this will unfortunately only work inside the `argmin` crate itself due to the fact
    /// that it is not possible to `impl` a type from another crate. Therefore if one implements a
    /// solver outside of argmin, `.problem(...)` has to be called directly as shown in the first
    /// example.
    pub fn problem<T, F: FnOnce(&O) -> Result<T, Error>>(
        &mut self,
        counts_string: &'static str,
        func: F,
    ) -> Result<T, Error> {
        let count = self.counts.entry(counts_string).or_insert(0);
        *count += 1;
        func(self.problem.as_ref().unwrap())
    }

    /// Gives access to the stored `problem` via the closure `func` and keeps track of how many
    /// times the function has been called. In contrast to the `problem` method, this also allows
    /// to pass the number of parameter vectors which will be processed by the underlying problem.
    /// This is used by the `bulk_*` methods, which process multiple parameters at once.
    /// The function counts will be passed to observers labeled with `counts_string`.
    /// Per convention, `counts_string` is chosen as `<something>_count`.
    pub fn bulk_problem<T, F: FnOnce(&O) -> Result<T, Error>>(
        &mut self,
        counts_string: &'static str,
        num_param_vecs: usize,
        func: F,
    ) -> Result<T, Error> {
        let count = self.counts.entry(counts_string).or_insert(0);
        *count += num_param_vecs as u64;
        func(self.problem.as_ref().unwrap())
    }

    /// Returns the internally stored problem and replaces it with `None`.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::Problem;
    /// # use std::collections::HashMap;
    /// #
    /// # #[derive(Eq, PartialEq, Debug)]
    /// # struct UserDefinedProblem {};
    /// #
    /// let mut problem = Problem::new(UserDefinedProblem {});
    /// let user_problem: Option<UserDefinedProblem> = problem.take_problem();
    ///
    /// assert_eq!(user_problem.unwrap(), UserDefinedProblem {});
    /// assert!(problem.problem.is_none());
    /// # assert_eq!(problem.counts, HashMap::new());
    /// ```
    pub fn take_problem(&mut self) -> Option<O> {
        self.problem.take()
    }

    /// Consumes another instance of `Problem`. The internally stored user defined problem of the
    /// passed `Problem` instance is moved to `Self`. The function evaluation counts are
    /// merged/summed up.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::Problem;
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// // Simulate function evaluation counts in `problem1`
    /// problem1.counts.insert("cost_count", 2);
    ///
    /// // Take the internally stored problem such that `None` remains in its place.
    /// let _ = problem1.take_problem();
    /// assert!(problem1.problem.is_none());
    ///
    /// let mut problem2 = Problem::new(UserDefinedProblem {});
    ///
    /// // Simulate function evaluation counts in `problem2`
    /// problem2.counts.insert("cost_count", 1);
    /// problem2.counts.insert("gradient_count", 4);
    ///
    /// // `problem1` consumes `problem2` by moving its internally stored user defined problem and
    /// // by merging the function evaluation counts
    /// problem1.consume_problem(problem2);
    ///
    /// // `problem1` now holds a problem of type `UserDefinedProblem` (taken from `problem2`)
    /// assert_eq!(problem1.problem.unwrap(), UserDefinedProblem {});
    ///
    /// // The function evaluation counts have been merged
    /// assert_eq!(problem1.counts["cost_count"], 3);
    /// assert_eq!(problem1.counts["gradient_count"], 4);
    /// ```
    pub fn consume_problem(&mut self, mut other: Problem<O>) {
        self.problem = Some(other.take_problem().unwrap());
        self.consume_func_counts(other);
    }

    /// Consumes another instance of `Problem` by summing ob the function evaluation counts.
    /// In contrast to `consume_problem`, the internally stored `problem` remains untouched.
    /// Therefore the two internally stored problems do not need to be of the same type.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::Problem;
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem1 {};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem2 {};
    /// #
    /// let mut problem1 = Problem::new(UserDefinedProblem1 {});
    ///
    /// // Simulate function evaluation counts in `problem1`.
    /// problem1.counts.insert("cost_count", 2);
    ///
    /// // Take the internally stored problem such that `None` remains in its place.
    /// let _ = problem1.take_problem();
    /// assert!(problem1.problem.is_none());
    ///
    /// let mut problem2 = Problem::new(UserDefinedProblem2 {});
    ///
    /// // Simulate function evaluation counts in `problem2`
    /// problem2.counts.insert("cost_count", 1);
    /// problem2.counts.insert("gradient_count", 4);
    ///
    /// // `problem1` consumes `problem2` by merging the function evaluation counts.
    /// problem1.consume_func_counts(problem2);
    ///
    /// // The internally stored problem remains being `None` (in contrast to `consume_problem`).
    /// assert!(problem1.problem.is_none());
    ///
    /// // The function evaluation counts have been merged.
    /// assert_eq!(problem1.counts["cost_count"], 3);
    /// assert_eq!(problem1.counts["gradient_count"], 4);
    /// ```
    pub fn consume_func_counts<O2>(&mut self, other: Problem<O2>) {
        for (k, v) in other.counts.iter() {
            let count = self.counts.entry(k).or_insert(0);
            *count += v
        }
    }

    /// Resets the function evaluation counts to zero.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::Problem;
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// let mut problem = Problem::new(UserDefinedProblem {});
    ///
    /// // Simulate function evaluation counts in `problem1`.
    /// problem.counts.insert("cost_count", 2);
    /// problem.counts.insert("gradient_count", 4);
    ///
    /// assert_eq!(problem.counts["cost_count"], 2);
    /// assert_eq!(problem.counts["gradient_count"], 4);
    ///
    /// // Set function evaluation counts to 0
    /// problem.reset();
    ///
    /// assert_eq!(problem.counts["cost_count"], 0);
    /// assert_eq!(problem.counts["gradient_count"], 0);
    /// ```
    pub fn reset(&mut self) {
        for (_, v) in self.counts.iter_mut() {
            *v = 0;
        }
    }

    /// Returns the internally stored user defined problem by consuming `Self`.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::Problem;
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// let problem = Problem::new(UserDefinedProblem {});
    ///
    /// let user_problem = problem.get_problem();
    ///
    /// assert_eq!(user_problem.unwrap(), UserDefinedProblem {});
    /// ```
    pub fn get_problem(self) -> Option<O> {
        self.problem
    }
}

/// Defines the application of an operator to a parameter vector.
///
/// # Example
///
/// ```
/// use argmin::core::{Operator, Error};
/// use argmin_math::ArgminDot;
///
/// struct Model {
///     matrix: Vec<Vec<f64>>,
/// }
///
/// impl Operator for Model {
///     type Param = Vec<f64>;
///     type Output = Vec<f64>;
///
///     /// Multiply matrix `self.matrix` with vector `param`
///     fn apply(&self, param: &Self::Param) -> Result<Self::Output, Error> {
///         Ok(self.matrix.dot(param))
///     }
/// }
/// ```
pub trait Operator {
    /// Type of the parameter vector
    type Param;
    /// Type of the return value of the operator
    type Output;

    /// Applies the operator to parameters
    fn apply(&self, param: &Self::Param) -> Result<Self::Output, Error>;

    bulk!(apply, Self::Param, Self::Output);
}

/// Defines computation of a cost function value
///
/// # Example
///
/// ```
/// use argmin::core::{CostFunction, Error};
/// use argmin_testfunctions::rosenbrock;
///
/// struct Rosenbrock {}
///
/// impl CostFunction for Rosenbrock {
///     type Param = Vec<f64>;
///     type Output = f64;
///
///     /// Compute Rosenbrock function
///     fn cost(&self, param: &Self::Param) -> Result<Self::Output, Error> {
///         Ok(rosenbrock(param))
///     }
/// }
/// ```
pub trait CostFunction {
    /// Type of the parameter vector
    type Param;
    /// Type of the return value of the cost function
    type Output;

    /// Compute cost function
    fn cost(&self, param: &Self::Param) -> Result<Self::Output, Error>;

    bulk!(cost, Self::Param, Self::Output);
}

/// Defines the computation of the gradient.
///
/// # Example
///
/// ```
/// use argmin::core::{Gradient, Error};
/// # fn compute_gradient(_a: &[f64]) -> Vec<f64> { vec![] }
///
/// struct Rosenbrock {}
///
/// impl Gradient for Rosenbrock {
///     type Param = Vec<f64>;
///     type Gradient = Vec<f64>;
///
///     /// Compute gradient of rosenbrock function
///     fn gradient(&self, param: &Self::Param) -> Result<Self::Gradient, Error> {
///         Ok(compute_gradient(param))
///     }
/// }
/// ```
pub trait Gradient {
    /// Type of the parameter vector
    type Param;
    /// Type of the gradient
    type Gradient;

    /// Compute gradient
    fn gradient(&self, param: &Self::Param) -> Result<Self::Gradient, Error>;

    bulk!(gradient, Self::Param, Self::Gradient);
}

/// Defines the computation of the Hessian.
///
/// # Example
///
/// ```
/// use argmin::core::{Hessian, Error};
/// # fn compute_hessian(_a: &[f64]) -> Vec<f64> { vec![] }
///
/// struct Rosenbrock {}
///
/// impl Hessian for Rosenbrock {
///     type Param = Vec<f64>;
///     type Hessian = Vec<f64>;
///
///     /// Compute gradient of rosenbrock function
///     fn hessian(&self, param: &Self::Param) -> Result<Self::Hessian, Error> {
///         Ok(compute_hessian(&param))
///     }
/// }
pub trait Hessian {
    /// Type of the parameter vector
    type Param;
    /// Type of the Hessian
    type Hessian;

    /// Compute Hessian
    fn hessian(&self, param: &Self::Param) -> Result<Self::Hessian, Error>;

    bulk!(hessian, Self::Param, Self::Hessian);
}

/// Defines the computation of the Jacobian.
///
/// # Example
///
/// ```
/// use argmin::core::{Jacobian, Error};
///
/// struct Problem {}
///
/// # fn problem_jacobian(p: &[f64]) -> Vec<Vec<f64>> {
/// #     vec![vec![1.0f64, 2.0f64], vec![1.0f64, 2.0f64]]
/// # }
/// #
/// impl Jacobian for Problem {
///     type Param = Vec<f64>;
///     type Jacobian = Vec<Vec<f64>>;
///
///     fn jacobian(&self, p: &Self::Param) -> Result<Self::Jacobian, Error> {
///         Ok(problem_jacobian(p))
///     }
/// }
/// ```
pub trait Jacobian {
    /// Type of the parameter vector
    type Param;
    /// Type of the Jacobian
    type Jacobian;

    /// Compute Jacobian
    fn jacobian(&self, param: &Self::Param) -> Result<Self::Jacobian, Error>;

    bulk!(jacobian, Self::Param, Self::Jacobian);
}

/// Defines a linear Program
///
/// # Example
///
/// ```
/// use argmin::core::{LinearProgram, Error};
///
/// struct Problem {}
///
/// impl LinearProgram for Problem {
///     type Param = Vec<f64>;
///     type Float = f64;
///
///     fn c(&self) -> Result<Vec<Self::Float>, Error> {
///         Ok(vec![1.0, 2.0])
///     }
///
///     fn b(&self) -> Result<Vec<Self::Float>, Error> {
///         Ok(vec![3.0, 4.0])
///     }
///
///     fn A(&self) -> Result<Vec<Vec<Self::Float>>, Error> {
///         Ok(vec![vec![5.0, 6.0], vec![7.0, 8.0]])
///     }
/// }
/// ```
pub trait LinearProgram {
    /// Type of the parameter vector
    type Param;
    /// Precision of floats
    type Float: ArgminFloat;

    /// TODO c for linear programs
    /// Those three could maybe be merged into a single function; name unclear
    fn c(&self) -> Result<Vec<Self::Float>, Error> {
        Err(argmin_error!(
            NotImplemented,
            "Method `c` of LinearProgram trait not implemented!"
        ))
    }

    /// TODO b for linear programs
    fn b(&self) -> Result<Vec<Self::Float>, Error> {
        Err(argmin_error!(
            NotImplemented,
            "Method `b` of LinearProgram trait not implemented!"
        ))
    }

    /// TODO A for linear programs
    #[allow(non_snake_case)]
    fn A(&self) -> Result<Vec<Vec<Self::Float>>, Error> {
        Err(argmin_error!(
            NotImplemented,
            "Method `A` of LinearProgram trait not implemented!"
        ))
    }
}

/// Wraps a call to `apply` defined in the `Operator` trait and as such allows to call `apply` on
/// an instance of `Problem`. Internally, the number of evaluations of `apply` is counted.
impl<O: Operator> Problem<O> {
    /// Calls `apply` defined in the `Operator` trait and keeps track of the number of evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, Operator, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl Operator for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Output = Vec<f64>;
    /// #
    /// #     fn apply(&self, param: &Self::Param) -> Result<Self::Output, Error> {
    /// #         Ok(vec![1.0f64, 1.0f64])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `Operator`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param = vec![2.0f64, 1.0f64];
    ///
    /// let res = problem1.apply(&param);
    ///
    /// assert_eq!(problem1.counts["operator_count"], 1);
    /// # assert_eq!(res.unwrap(), vec![1.0f64, 1.0f64]);
    /// ```
    pub fn apply(&mut self, param: &O::Param) -> Result<O::Output, Error> {
        self.problem("operator_count", |problem| problem.apply(param))
    }

    /// Calls `bulk_apply` defined in the `Operator` trait and keeps track of the number of
    /// evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, Operator, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl Operator for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Output = Vec<f64>;
    /// #
    /// #     fn apply(&self, param: &Self::Param) -> Result<Self::Output, Error> {
    /// #         Ok(vec![1.0f64, 1.0f64])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `Operator`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param1 = vec![2.0f64, 1.0f64];
    /// let param2 = vec![3.0f64, 5.0f64];
    /// let params = vec![&param1, &param2];
    ///
    /// let res = problem1.bulk_apply(&params);
    ///
    /// assert_eq!(problem1.counts["operator_count"], 2);
    /// # let res = res.unwrap();
    /// # assert_eq!(res[0], vec![1.0f64, 1.0f64]);
    /// # assert_eq!(res[1], vec![1.0f64, 1.0f64]);
    /// ```
    pub fn bulk_apply<P>(&mut self, params: &[P]) -> Result<Vec<O::Output>, Error>
    where
        P: std::borrow::Borrow<O::Param> + SyncAlias,
        O::Output: SendAlias,
        O: SyncAlias,
    {
        self.bulk_problem("operator_count", params.len(), |problem| {
            problem.bulk_apply(params)
        })
    }
}

/// Wraps a call to `cost` defined in the `CostFunction` trait and as such allows to call `cost` on
/// an instance of `Problem`. Internally, the number of evaluations of `cost` is counted.
impl<O: CostFunction> Problem<O> {
    /// Calls `cost` defined in the `CostFunction` trait and keeps track of the number of
    /// evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, CostFunction, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl CostFunction for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Output = f64;
    /// #
    /// #     fn cost(&self, param: &Self::Param) -> Result<Self::Output, Error> {
    /// #         Ok(4.0f64)
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `CostFunction`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param = vec![2.0f64, 1.0f64];
    ///
    /// let res = problem1.cost(&param);
    ///
    /// assert_eq!(problem1.counts["cost_count"], 1);
    /// # assert_eq!(res.unwrap(), 4.0f64);
    /// ```
    pub fn cost(&mut self, param: &O::Param) -> Result<O::Output, Error> {
        self.problem("cost_count", |problem| problem.cost(param))
    }

    /// Calls `bulk_cost` defined in the `CostFunction` trait and keeps track of the number of
    /// evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, CostFunction, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl CostFunction for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Output = f64;
    /// #
    /// #     fn cost(&self, param: &Self::Param) -> Result<Self::Output, Error> {
    /// #         Ok(4.0f64)
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `CostFunction`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param1 = vec![2.0f64, 1.0f64];
    /// let param2 = vec![3.0f64, 5.0f64];
    /// let params = vec![&param1, &param2];
    ///
    /// let res = problem1.bulk_cost(&params);
    ///
    /// assert_eq!(problem1.counts["cost_count"], 2);
    /// # let res = res.unwrap();
    /// # assert_eq!(res[0], 4.0f64);
    /// # assert_eq!(res[1], 4.0f64);
    /// ```
    pub fn bulk_cost<P>(&mut self, params: &[P]) -> Result<Vec<O::Output>, Error>
    where
        P: std::borrow::Borrow<O::Param> + SyncAlias,
        O::Output: SendAlias,
        O: SyncAlias,
    {
        self.bulk_problem("cost_count", params.len(), |problem| {
            problem.bulk_cost(params)
        })
    }
}

/// Wraps a call to `gradient` defined in the `Gradient` trait and as such allows to call `gradient` on
/// an instance of `Problem`. Internally, the number of evaluations of `gradient` is counted.
impl<O: Gradient> Problem<O> {
    /// Calls `gradient` defined in the `Gradient` trait and keeps track of the number of
    /// evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, Gradient, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl Gradient for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Gradient = Vec<f64>;
    /// #
    /// #     fn gradient(&self, param: &Self::Param) -> Result<Self::Gradient, Error> {
    /// #         Ok(vec![1.0f64, 1.0f64])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `Gradient`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param = vec![2.0f64, 1.0f64];
    ///
    /// let res = problem1.gradient(&param);
    ///
    /// assert_eq!(problem1.counts["gradient_count"], 1);
    /// # assert_eq!(res.unwrap(), vec![1.0f64, 1.0f64]);
    /// ```
    pub fn gradient(&mut self, param: &O::Param) -> Result<O::Gradient, Error> {
        self.problem("gradient_count", |problem| problem.gradient(param))
    }

    /// Calls `bulk_gradient` defined in the `Gradient` trait and keeps track of the number of
    /// evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, Gradient, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl Gradient for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Gradient = Vec<f64>;
    /// #
    /// #     fn gradient(&self, param: &Self::Param) -> Result<Self::Gradient, Error> {
    /// #         Ok(vec![1.0f64, 1.0f64])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `Gradient`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param1 = vec![2.0f64, 1.0f64];
    /// let param2 = vec![3.0f64, 5.0f64];
    /// let params = vec![&param1, &param2];
    ///
    /// let res = problem1.bulk_gradient(&params);
    ///
    /// assert_eq!(problem1.counts["gradient_count"], 2);
    /// # let res = res.unwrap();
    /// # assert_eq!(res[0], vec![1.0f64, 1.0f64]);
    /// # assert_eq!(res[1], vec![1.0f64, 1.0f64]);
    /// ```
    pub fn bulk_gradient<P>(&mut self, params: &[P]) -> Result<Vec<O::Gradient>, Error>
    where
        P: std::borrow::Borrow<O::Param> + SyncAlias,
        O::Gradient: SendAlias,
        O: SyncAlias,
    {
        self.bulk_problem("gradient_count", params.len(), |problem| {
            problem.bulk_gradient(params)
        })
    }
}

/// Wraps a call to `hessian` defined in the `Hessian` trait and as such allows to call `hessian` on
/// an instance of `Problem`. Internally, the number of evaluations of `hessian` is counted.
impl<O: Hessian> Problem<O> {
    /// Calls `hessian` defined in the `Hessian` trait and keeps track of the number of evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, Hessian, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl Hessian for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Hessian = Vec<Vec<f64>>;
    /// #
    /// #     fn hessian(&self, param: &Self::Param) -> Result<Self::Hessian, Error> {
    /// #         Ok(vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `Hessian`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param = vec![2.0f64, 1.0f64];
    ///
    /// let res = problem1.hessian(&param);
    ///
    /// assert_eq!(problem1.counts["hessian_count"], 1);
    /// # assert_eq!(res.unwrap(), vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]]);
    /// ```
    pub fn hessian(&mut self, param: &O::Param) -> Result<O::Hessian, Error> {
        self.problem("hessian_count", |problem| problem.hessian(param))
    }

    /// Calls `bulk_hessian` defined in the `Hessian` trait and keeps track of the number of
    /// evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, Hessian, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl Hessian for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Hessian = Vec<Vec<f64>>;
    /// #
    /// #     fn hessian(&self, param: &Self::Param) -> Result<Self::Hessian, Error> {
    /// #         Ok(vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `Hessian`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param1 = vec![2.0f64, 1.0f64];
    /// let param2 = vec![3.0f64, 5.0f64];
    /// let params = vec![&param1, &param2];
    ///
    /// let res = problem1.bulk_hessian(&params);
    ///
    /// assert_eq!(problem1.counts["hessian_count"], 2);
    /// # let res = res.unwrap();
    /// # assert_eq!(res[0], vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]]);
    /// # assert_eq!(res[1], vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]]);
    /// ```
    pub fn bulk_hessian<P>(&mut self, params: &[P]) -> Result<Vec<O::Hessian>, Error>
    where
        P: std::borrow::Borrow<O::Param> + SyncAlias,
        O::Hessian: SendAlias,
        O: SyncAlias,
    {
        self.bulk_problem("hessian_count", params.len(), |problem| {
            problem.bulk_hessian(params)
        })
    }
}

/// Wraps a call to `jacobian` defined in the `Jacobian` trait and as such allows to call `jacobian`
/// on an instance of `Problem`. Internally, the number of evaluations of `jacobian` is counted.
impl<O: Jacobian> Problem<O> {
    /// Calls `jacobian` defined in the `Jacobian` trait and keeps track of the number of
    /// evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, Jacobian, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl Jacobian for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Jacobian = Vec<Vec<f64>>;
    /// #
    /// #     fn jacobian(&self, param: &Self::Param) -> Result<Self::Jacobian, Error> {
    /// #         Ok(vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `Jacobian`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let param = vec![2.0f64, 1.0f64];
    ///
    /// let res = problem1.jacobian(&param);
    ///
    /// assert_eq!(problem1.counts["jacobian_count"], 1);
    /// # assert_eq!(res.unwrap(), vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]]);
    /// ```
    pub fn jacobian(&mut self, param: &O::Param) -> Result<O::Jacobian, Error> {
        self.problem("jacobian_count", |problem| problem.jacobian(param))
    }

    /// Calls `bulk_jacobian` defined in the `Jacobian` trait and keeps track of the number of
    /// evaluations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, Jacobian, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl Jacobian for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Jacobian = Vec<Vec<f64>>;
    /// #
    /// #     fn jacobian(&self, param: &Self::Param) -> Result<Self::Jacobian, Error> {
    /// #         Ok(vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `Jacobian`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let params = vec![vec![2.0f64, 1.0f64], vec![3.0f64, 5.0f64]];
    ///
    /// let res = problem1.bulk_jacobian(&params);
    ///
    /// assert_eq!(problem1.counts["jacobian_count"], 2);
    /// # let res = res.unwrap();
    /// # assert_eq!(res[0], vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]]);
    /// # assert_eq!(res[1], vec![vec![1.0f64, 0.0f64], vec![0.0f64, 1.0f64]]);
    /// ```
    pub fn bulk_jacobian<P>(&mut self, params: &[P]) -> Result<Vec<O::Jacobian>, Error>
    where
        P: std::borrow::Borrow<O::Param> + SyncAlias,
        O::Jacobian: SendAlias,
        O: SyncAlias,
    {
        self.bulk_problem("jacobian_count", params.len(), |problem| {
            problem.bulk_jacobian(params)
        })
    }
}

/// Wraps a calls to `c`, `b` and `A` defined in the `LinearProgram` trait and as such allows to
/// call those methods on an instance of `Problem`.
impl<O: LinearProgram> Problem<O> {
    /// Calls `c` defined in the `LinearProgram` trait.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, LinearProgram, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl LinearProgram for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Float = f64;
    /// #
    /// #     fn c(&self) -> Result<Vec<Self::Float>, Error> {
    /// #         Ok(vec![4.0f64, 3.0f64])
    /// #     }
    /// #
    /// #     fn b(&self) -> Result<Vec<Self::Float>, Error> {
    /// #         Ok(vec![3.0f64, 2.0f64])
    /// #     }
    /// #
    /// #     fn A(&self) -> Result<Vec<Vec<Self::Float>>, Error> {
    /// #         Ok(vec![vec![1.0f64, 2.0f64], vec![3.0f64, 2.0f64]])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `LinearProgram`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let c = problem1.c();
    /// let b = problem1.b();
    ///
    /// # assert_eq!(c.unwrap(), vec![4.0f64, 3.0f64]);
    /// ```
    pub fn c(&self) -> Result<Vec<O::Float>, Error> {
        self.problem.as_ref().unwrap().c()
    }

    /// Calls `b` defined in the `LinearProgram` trait.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, LinearProgram, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl LinearProgram for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Float = f64;
    /// #
    /// #     fn c(&self) -> Result<Vec<Self::Float>, Error> {
    /// #         Ok(vec![4.0f64, 3.0f64])
    /// #     }
    /// #
    /// #     fn b(&self) -> Result<Vec<Self::Float>, Error> {
    /// #         Ok(vec![3.0f64, 2.0f64])
    /// #     }
    /// #
    /// #     fn A(&self) -> Result<Vec<Vec<Self::Float>>, Error> {
    /// #         Ok(vec![vec![1.0f64, 2.0f64], vec![3.0f64, 2.0f64]])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `LinearProgram`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let b = problem1.b();
    ///
    /// # assert_eq!(b.unwrap(), vec![3.0f64, 2.0f64]);
    /// ```
    pub fn b(&self) -> Result<Vec<O::Float>, Error> {
        self.problem.as_ref().unwrap().b()
    }

    /// Calls `A` defined in the `LinearProgram` trait.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{Problem, LinearProgram, Error};
    /// #
    /// # #[derive(Eq, PartialEq, Debug, Clone)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # impl LinearProgram for UserDefinedProblem {
    /// #     type Param = Vec<f64>;
    /// #     type Float = f64;
    /// #
    /// #     fn c(&self) -> Result<Vec<Self::Float>, Error> {
    /// #         Ok(vec![4.0f64, 3.0f64])
    /// #     }
    /// #
    /// #     fn b(&self) -> Result<Vec<Self::Float>, Error> {
    /// #         Ok(vec![3.0f64, 2.0f64])
    /// #     }
    /// #
    /// #     fn A(&self) -> Result<Vec<Vec<Self::Float>>, Error> {
    /// #         Ok(vec![vec![1.0f64, 2.0f64], vec![3.0f64, 2.0f64]])
    /// #     }
    /// # }
    /// // `UserDefinedProblem` implements `LinearProgram`.
    /// let mut problem1 = Problem::new(UserDefinedProblem {});
    ///
    /// let a = problem1.A();
    ///
    /// # assert_eq!(a.unwrap(), vec![vec![1.0f64, 2.0f64], vec![3.0f64, 2.0f64]]);
    /// ```
    #[allow(non_snake_case)]
    pub fn A(&self) -> Result<Vec<Vec<O::Float>>, Error> {
        self.problem.as_ref().unwrap().A()
    }
}