1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::core::{ArgminFloat, Problem, State, TerminationReason, TerminationStatus};
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
use std::collections::HashMap;

/// Maintains the state from iteration to iteration of a solver
///
/// This struct is passed from one iteration of an algorithm to the next.
///
/// Keeps track of
///
/// * parameter vector of current and previous iteration
/// * best parameter vector of current and previous iteration
/// * cost function value of current and previous iteration
/// * current and previous best cost function value
/// * target cost function value
/// * current iteration number
/// * iteration number where the last best parameter vector was found
/// * maximum number of iterations that will be executed
/// * problem function evaluation counts (cost function, gradient, jacobian, hessian,
/// * elapsed time
/// * termination status
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct LinearProgramState<P, F> {
    /// Current parameter vector
    pub param: Option<P>,
    /// Previous parameter vector
    pub prev_param: Option<P>,
    /// Current best parameter vector
    pub best_param: Option<P>,
    /// Previous best parameter vector
    pub prev_best_param: Option<P>,
    /// Current cost function value
    pub cost: F,
    /// Previous cost function value
    pub prev_cost: F,
    /// Current best cost function value
    pub best_cost: F,
    /// Previous best cost function value
    pub prev_best_cost: F,
    /// Target cost function value
    pub target_cost: F,
    /// Current iteration
    pub iter: u64,
    /// Iteration number of last best cost
    pub last_best_iter: u64,
    /// Maximum number of iterations
    pub max_iters: u64,
    /// Evaluation counts
    pub counts: HashMap<String, u64>,
    /// Update evaluation counts?
    pub counting_enabled: bool,
    /// Time required so far
    pub time: Option<instant::Duration>,
    /// Status of optimization execution
    pub termination_status: TerminationStatus,
}

impl<P, F> LinearProgramState<P, F> {
    /// Set parameter vector. This shifts the stored parameter vector to the previous parameter
    /// vector.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State};
    /// # let state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # let param_old = vec![1.0f64, 2.0f64];
    /// # let state = state.param(param_old);
    /// # assert!(state.prev_param.is_none());
    /// # assert_eq!(state.param.as_ref().unwrap()[0].to_ne_bytes(), 1.0f64.to_ne_bytes());
    /// # assert_eq!(state.param.as_ref().unwrap()[1].to_ne_bytes(), 2.0f64.to_ne_bytes());
    /// # let param = vec![0.0f64, 3.0f64];
    /// let state = state.param(param);
    /// # assert_eq!(state.prev_param.as_ref().unwrap()[0].to_ne_bytes(), 1.0f64.to_ne_bytes());
    /// # assert_eq!(state.prev_param.as_ref().unwrap()[1].to_ne_bytes(), 2.0f64.to_ne_bytes());
    /// # assert_eq!(state.param.as_ref().unwrap()[0].to_ne_bytes(), 0.0f64.to_ne_bytes());
    /// # assert_eq!(state.param.as_ref().unwrap()[1].to_ne_bytes(), 3.0f64.to_ne_bytes());
    /// ```
    #[must_use]
    pub fn param(mut self, param: P) -> Self {
        std::mem::swap(&mut self.prev_param, &mut self.param);
        self.param = Some(param);
        self
    }

    /// Set target cost.
    ///
    /// When this cost is reached, the algorithm will stop. The default is
    /// `Self::Float::NEG_INFINITY`.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # assert_eq!(state.target_cost.to_ne_bytes(), f64::NEG_INFINITY.to_ne_bytes());
    /// let state = state.target_cost(0.0);
    /// # assert_eq!(state.target_cost.to_ne_bytes(), 0.0f64.to_ne_bytes());
    /// ```
    #[must_use]
    pub fn target_cost(mut self, target_cost: F) -> Self {
        self.target_cost = target_cost;
        self
    }

    /// Set maximum number of iterations
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # assert_eq!(state.max_iters, u64::MAX);
    /// let state = state.max_iters(1000);
    /// # assert_eq!(state.max_iters, 1000);
    /// ```
    #[must_use]
    pub fn max_iters(mut self, iters: u64) -> Self {
        self.max_iters = iters;
        self
    }

    /// Set the current cost function value. This shifts the stored cost function value to the
    /// previous cost function value.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State};
    /// # let state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # let cost_old = 1.0f64;
    /// # let state = state.cost(cost_old);
    /// # assert_eq!(state.prev_cost.to_ne_bytes(), f64::INFINITY.to_ne_bytes());
    /// # assert_eq!(state.cost.to_ne_bytes(), 1.0f64.to_ne_bytes());
    /// # let cost = 0.0f64;
    /// let state = state.cost(cost);
    /// # assert_eq!(state.prev_cost.to_ne_bytes(), 1.0f64.to_ne_bytes());
    /// # assert_eq!(state.cost.to_ne_bytes(), 0.0f64.to_ne_bytes());
    /// ```
    #[must_use]
    pub fn cost(mut self, cost: F) -> Self {
        std::mem::swap(&mut self.prev_cost, &mut self.cost);
        self.cost = cost;
        self
    }

    /// Overrides state of counting function executions (default: false)
    /// ```
    /// # use argmin::core::{State, LinearProgramState};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # assert!(!state.counting_enabled);
    /// let state = state.counting(true);
    /// # assert!(state.counting_enabled);
    /// ```
    #[must_use]
    pub fn counting(mut self, mode: bool) -> Self {
        self.counting_enabled = mode;
        self
    }
}

impl<P, F> State for LinearProgramState<P, F>
where
    P: Clone,
    F: ArgminFloat,
{
    /// Type of parameter vector
    type Param = P;
    /// Floating point precision
    type Float = F;

    /// Create new `LinearProgramState` instance
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate instant;
    /// # use instant;
    /// # use std::collections::HashMap;
    /// # use argmin::core::TerminationStatus;
    /// use argmin::core::{LinearProgramState, State};
    /// let state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    ///
    /// # assert!(state.param.is_none());
    /// # assert!(state.prev_param.is_none());
    /// # assert!(state.best_param.is_none());
    /// # assert!(state.prev_best_param.is_none());
    /// # assert_eq!(state.cost.to_ne_bytes(), f64::INFINITY.to_ne_bytes());
    /// # assert_eq!(state.prev_cost.to_ne_bytes(), f64::INFINITY.to_ne_bytes());
    /// # assert_eq!(state.best_cost.to_ne_bytes(), f64::INFINITY.to_ne_bytes());
    /// # assert_eq!(state.prev_best_cost.to_ne_bytes(), f64::INFINITY.to_ne_bytes());
    /// # assert_eq!(state.target_cost.to_ne_bytes(), f64::NEG_INFINITY.to_ne_bytes());
    /// # assert_eq!(state.iter, 0);
    /// # assert_eq!(state.last_best_iter, 0);
    /// # assert_eq!(state.max_iters, u64::MAX);
    /// # assert_eq!(state.counts, HashMap::new());
    /// # assert_eq!(state.time.unwrap(), instant::Duration::new(0, 0));
    /// # assert_eq!(state.termination_status, TerminationStatus::NotTerminated);
    /// ```
    fn new() -> Self {
        LinearProgramState {
            param: None,
            prev_param: None,
            best_param: None,
            prev_best_param: None,
            cost: Self::Float::infinity(),
            prev_cost: Self::Float::infinity(),
            best_cost: Self::Float::infinity(),
            prev_best_cost: Self::Float::infinity(),
            target_cost: Self::Float::neg_infinity(),
            iter: 0,
            last_best_iter: 0,
            max_iters: u64::MAX,
            counts: HashMap::new(),
            counting_enabled: false,
            time: Some(instant::Duration::new(0, 0)),
            termination_status: TerminationStatus::NotTerminated,
        }
    }

    /// Checks if the current parameter vector is better than the previous best parameter value. If
    /// a new best parameter vector was found, the state is updated accordingly.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    ///
    /// // Simulating a new, better parameter vector
    /// state.best_param = Some(vec![1.0f64]);
    /// state.best_cost = 10.0;
    /// state.param = Some(vec![2.0f64]);
    /// state.cost = 5.0;
    ///
    /// // Calling update
    /// state.update();
    ///
    /// // Check if update was successful
    /// assert_eq!(state.best_param.as_ref().unwrap()[0], 2.0f64);
    /// assert_eq!(state.best_cost.to_ne_bytes(), state.best_cost.to_ne_bytes());
    /// assert!(state.is_best());
    /// ```
    ///
    /// For algorithms which do not compute the cost function, every new parameter vector will be
    /// the new best:
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    ///
    /// // Simulating a new, better parameter vector
    /// state.best_param = Some(vec![1.0f64]);
    /// state.param = Some(vec![2.0f64]);
    ///
    /// // Calling update
    /// state.update();
    ///
    /// // Check if update was successful
    /// assert_eq!(state.best_param.as_ref().unwrap()[0], 2.0f64);
    /// assert_eq!(state.best_cost.to_ne_bytes(), state.best_cost.to_ne_bytes());
    /// assert!(state.is_best());
    /// ```
    fn update(&mut self) {
        // check if parameters are the best so far
        // Comparison is done using `<` to avoid new solutions with the same cost function value as
        // the current best to be accepted. However, some solvers to not compute the cost function
        // value (such as the Newton method). Those will always have `Inf` cost. Therefore if both
        // the new value and the previous best value are `Inf`, the solution is also accepted. Care
        // is taken that both `Inf` also have the same sign.
        if self.cost < self.best_cost
            || (self.cost.is_infinite()
                && self.best_cost.is_infinite()
                && self.cost.is_sign_positive() == self.best_cost.is_sign_positive())
        {
            let param = (*self.param.as_ref().unwrap()).clone();
            let cost = self.cost;
            std::mem::swap(&mut self.prev_best_param, &mut self.best_param);
            self.best_param = Some(param);
            std::mem::swap(&mut self.prev_best_cost, &mut self.best_cost);
            self.best_cost = cost;
            self.last_best_iter = self.iter;
        }
    }

    /// Returns a reference to the current parameter vector
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # assert!(state.param.is_none());
    /// # state.param = Some(vec![1.0, 2.0]);
    /// # assert_eq!(state.param.as_ref().unwrap()[0].to_ne_bytes(), 1.0f64.to_ne_bytes());
    /// # assert_eq!(state.param.as_ref().unwrap()[1].to_ne_bytes(), 2.0f64.to_ne_bytes());
    /// let param = state.get_param();  // Option<&P>
    /// # assert_eq!(param.as_ref().unwrap()[0].to_ne_bytes(), 1.0f64.to_ne_bytes());
    /// # assert_eq!(param.as_ref().unwrap()[1].to_ne_bytes(), 2.0f64.to_ne_bytes());
    /// ```
    fn get_param(&self) -> Option<&P> {
        self.param.as_ref()
    }

    /// Returns a reference to the current best parameter vector
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # assert!(state.best_param.is_none());
    /// # state.best_param = Some(vec![1.0, 2.0]);
    /// # assert_eq!(state.best_param.as_ref().unwrap()[0].to_ne_bytes(), 1.0f64.to_ne_bytes());
    /// # assert_eq!(state.best_param.as_ref().unwrap()[1].to_ne_bytes(), 2.0f64.to_ne_bytes());
    /// let best_param = state.get_best_param();  // Option<&P>
    /// # assert_eq!(best_param.as_ref().unwrap()[0].to_ne_bytes(), 1.0f64.to_ne_bytes());
    /// # assert_eq!(best_param.as_ref().unwrap()[1].to_ne_bytes(), 2.0f64.to_ne_bytes());
    /// ```
    fn get_best_param(&self) -> Option<&P> {
        self.best_param.as_ref()
    }

    /// Sets the termination status to [`Terminated`](`TerminationStatus::Terminated`) with the given reason
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat, TerminationReason, TerminationStatus};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # assert_eq!(state.termination_status, TerminationStatus::NotTerminated);
    /// let state = state.terminate_with(TerminationReason::MaxItersReached);
    /// # assert_eq!(state.termination_status, TerminationStatus::Terminated(TerminationReason::MaxItersReached));
    /// ```
    fn terminate_with(mut self, reason: TerminationReason) -> Self {
        self.termination_status = TerminationStatus::Terminated(reason);
        self
    }

    /// Sets the time required so far.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate instant;
    /// # use instant;
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat, TerminationReason};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// let state = state.time(Some(instant::Duration::new(0, 12)));
    /// # assert_eq!(state.time.unwrap(), instant::Duration::new(0, 12));
    /// ```
    fn time(&mut self, time: Option<instant::Duration>) -> &mut Self {
        self.time = time;
        self
    }

    /// Returns current cost function value.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # state.cost = 12.0;
    /// let cost = state.get_cost();
    /// # assert_eq!(cost.to_ne_bytes(), 12.0f64.to_ne_bytes());
    /// ```
    fn get_cost(&self) -> Self::Float {
        self.cost
    }

    /// Returns current best cost function value.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # state.best_cost = 12.0;
    /// let best_cost = state.get_best_cost();
    /// # assert_eq!(best_cost.to_ne_bytes(), 12.0f64.to_ne_bytes());
    /// ```
    fn get_best_cost(&self) -> Self::Float {
        self.best_cost
    }

    /// Returns target cost function value.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # state.target_cost = 12.0;
    /// let target_cost = state.get_target_cost();
    /// # assert_eq!(target_cost.to_ne_bytes(), 12.0f64.to_ne_bytes());
    /// ```
    fn get_target_cost(&self) -> Self::Float {
        self.target_cost
    }

    /// Returns current number of iterations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # state.iter = 12;
    /// let iter = state.get_iter();
    /// # assert_eq!(iter, 12);
    /// ```
    fn get_iter(&self) -> u64 {
        self.iter
    }

    /// Returns iteration number of last best parameter vector.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # state.last_best_iter = 12;
    /// let last_best_iter = state.get_last_best_iter();
    /// # assert_eq!(last_best_iter, 12);
    /// ```
    fn get_last_best_iter(&self) -> u64 {
        self.last_best_iter
    }

    /// Returns the maximum number of iterations.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # state.max_iters = 12;
    /// let max_iters = state.get_max_iters();
    /// # assert_eq!(max_iters, 12);
    /// ```
    fn get_max_iters(&self) -> u64 {
        self.max_iters
    }

    /// Returns the termination status.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat, TerminationStatus};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// let termination_status = state.get_termination_status();
    /// # assert_eq!(*termination_status, TerminationStatus::NotTerminated);
    /// ```
    fn get_termination_status(&self) -> &TerminationStatus {
        &self.termination_status
    }

    /// Returns the termination reason if terminated, otherwise None.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat, TerminationReason};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// let termination_reason = state.get_termination_reason();
    /// # assert_eq!(termination_reason, None);
    /// ```
    fn get_termination_reason(&self) -> Option<&TerminationReason> {
        match &self.termination_status {
            TerminationStatus::Terminated(reason) => Some(reason),
            TerminationStatus::NotTerminated => None,
        }
    }

    /// Returns the time elapsed since the start of the optimization.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate instant;
    /// # use instant;
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// let time = state.get_time();
    /// # assert_eq!(time.unwrap(), instant::Duration::new(0, 0));
    /// ```
    fn get_time(&self) -> Option<instant::Duration> {
        self.time
    }

    /// Increments the number of iterations by one
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # assert_eq!(state.iter, 0);
    /// state.increment_iter();
    /// # assert_eq!(state.iter, 1);
    /// ```
    fn increment_iter(&mut self) {
        self.iter += 1;
    }

    /// Set all function evaluation counts to the evaluation counts of another `Problem`.
    ///
    /// ```
    /// # use std::collections::HashMap;
    /// # use argmin::core::{Problem, LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new().counting(true);
    /// # assert_eq!(state.counts, HashMap::new());
    /// # state.counts.insert("test2".to_string(), 10u64);
    /// #
    /// # #[derive(Eq, PartialEq, Debug)]
    /// # struct UserDefinedProblem {};
    /// #
    /// # let mut problem = Problem::new(UserDefinedProblem {});
    /// # problem.counts.insert("test1", 10u64);
    /// # problem.counts.insert("test2", 2);
    /// state.func_counts(&problem);
    /// # let mut hm = HashMap::new();
    /// # hm.insert("test1".to_string(), 10u64);
    /// # hm.insert("test2".to_string(), 2u64);
    /// # assert_eq!(state.counts, hm);
    /// ```
    fn func_counts<O>(&mut self, problem: &Problem<O>) {
        if self.counting_enabled {
            for (k, &v) in problem.counts.iter() {
                let count = self.counts.entry(k.to_string()).or_insert(0);
                *count = v
            }
        }
    }

    /// Returns function evaluation counts
    ///
    /// # Example
    ///
    /// ```
    /// # use std::collections::HashMap;
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # assert_eq!(state.counts, HashMap::new());
    /// # state.counts.insert("test2".to_string(), 10u64);
    /// let counts = state.get_func_counts();
    /// # let mut hm = HashMap::new();
    /// # hm.insert("test2".to_string(), 10u64);
    /// # assert_eq!(*counts, hm);
    /// ```
    fn get_func_counts(&self) -> &HashMap<String, u64> {
        &self.counts
    }

    /// Returns whether the current parameter vector is also the best parameter vector found so
    /// far.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::core::{LinearProgramState, State, ArgminFloat};
    /// # let mut state: LinearProgramState<Vec<f64>, f64> = LinearProgramState::new();
    /// # state.last_best_iter = 12;
    /// # state.iter = 12;
    /// let is_best = state.is_best();
    /// # assert!(is_best);
    /// # state.last_best_iter = 12;
    /// # state.iter = 21;
    /// # let is_best = state.is_best();
    /// # assert!(!is_best);
    /// ```
    fn is_best(&self) -> bool {
        self.last_best_iter == self.iter
    }
}