1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
// Copyright 2018-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # References:
//!
//! [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
//! Springer. ISBN 0-387-30303-0.

use crate::prelude::*;
use serde::{Deserialize, Serialize};
use std::default::Default;

/// Gauss-Newton method
///
/// [Example](https://github.com/argmin-rs/argmin/blob/master/examples/gaussnewton.rs)
///
/// # References:
///
/// [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(Clone, Serialize, Deserialize)]
pub struct GaussNewton {
    /// gamma
    gamma: f64,
}

impl GaussNewton {
    /// Constructor
    pub fn new() -> Self {
        GaussNewton { gamma: 1.0 }
    }

    /// set gamma
    pub fn gamma(mut self, gamma: f64) -> Result<Self, Error> {
        if gamma <= 0.0 || gamma > 1.0 {
            return Err(ArgminError::InvalidParameter {
                text: "Gauss-Newton: gamma must be in  (0, 1].".to_string(),
            }
            .into());
        }
        self.gamma = gamma;
        Ok(self)
    }
}

impl Default for GaussNewton {
    fn default() -> GaussNewton {
        GaussNewton::new()
    }
}

impl<O> Solver<O> for GaussNewton
where
    O: ArgminOp,
    O::Param: Default
        + ArgminScaledSub<O::Param, f64, O::Param>
        + ArgminSub<O::Param, O::Param>
        + ArgminMul<f64, O::Param>,
    O::Output: ArgminNorm<f64>,
    O::Jacobian: ArgminTranspose
        + ArgminInv<O::Jacobian>
        + ArgminDot<O::Jacobian, O::Jacobian>
        + ArgminDot<O::Output, O::Param>
        + ArgminDot<O::Param, O::Param>,
    O::Hessian: Default,
{
    const NAME: &'static str = "Gauss-Newton method";

    fn next_iter(
        &mut self,
        op: &mut OpWrapper<O>,
        state: &IterState<O>,
    ) -> Result<ArgminIterData<O>, Error> {
        let param = state.get_param();
        let residuals = op.apply(&param)?;
        let jacobian = op.jacobian(&param)?;

        let p = jacobian
            .clone()
            .t()
            .dot(&jacobian)
            .inv()?
            .dot(&jacobian.t().dot(&residuals));

        let new_param = param.sub(&p.mul(&self.gamma));

        Ok(ArgminIterData::new()
            .param(new_param)
            .cost(residuals.norm()))
    }

    fn terminate(&mut self, state: &IterState<O>) -> TerminationReason {
        if (state.get_prev_cost() - state.get_cost()).abs() < std::f64::EPSILON.sqrt() {
            return TerminationReason::NoChangeInCost;
        }
        TerminationReason::NotTerminated
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_trait_impl;

    test_trait_impl!(gauss_newton_method, GaussNewton);
}