1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::core::{
    ArgminFloat, Error, Gradient, Hessian, IterState, Problem, Solver, State, TerminationReason,
    TerminationStatus, TrustRegionRadius, KV,
};
use argmin_math::{ArgminL2Norm, ArgminMul, ArgminWeightedDot};
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
use std::fmt::Debug;

/// # Cauchy point method
///
/// The Cauchy point is the minimum of the quadratic approximation of the cost function within the
/// trust region along the direction given by the first derivative.
///
/// ## Requirements on the optimization problem
///
/// The optimization problem is required to implement [`Gradient`] and [`Hessian`].
///
/// ## Reference
///
/// Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(Clone, Debug, Copy, PartialEq, Eq, PartialOrd, Default)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct CauchyPoint<F> {
    /// Radius
    radius: F,
}

impl<F> CauchyPoint<F>
where
    F: ArgminFloat,
{
    /// Construct a new instance of [`CauchyPoint`]
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::solver::trustregion::CauchyPoint;
    /// let cp: CauchyPoint<f64> = CauchyPoint::new();
    /// ```
    pub fn new() -> Self {
        CauchyPoint { radius: F::nan() }
    }
}

impl<O, F, P, G, H> Solver<O, IterState<P, G, (), H, (), F>> for CauchyPoint<F>
where
    O: Gradient<Param = P, Gradient = G> + Hessian<Param = P, Hessian = H>,
    P: Clone + ArgminMul<F, P> + ArgminWeightedDot<P, F, H>,
    G: ArgminMul<F, P> + ArgminWeightedDot<G, F, H> + ArgminL2Norm<F>,
    F: ArgminFloat,
{
    fn name(&self) -> &str {
        "Cauchy Point"
    }

    fn next_iter(
        &mut self,
        problem: &mut Problem<O>,
        mut state: IterState<P, G, (), H, (), F>,
    ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error> {
        let param = state.take_param().ok_or_else(argmin_error_closure!(
            NotInitialized,
            concat!(
                "`CauchyPoint` requires an initial parameter vector. ",
                "Please provide an initial guess via `Executor`s `configure` method."
            )
        ))?;

        let grad = state
            .take_gradient()
            .map(Result::Ok)
            .unwrap_or_else(|| problem.gradient(&param))?;

        let grad_norm = grad.l2_norm();

        let hessian = state
            .take_hessian()
            .map(Result::Ok)
            .unwrap_or_else(|| problem.hessian(&param))?;

        let wdp = grad.weighted_dot(&hessian, &grad);

        let tau: F = if wdp <= float!(0.0) {
            float!(1.0)
        } else {
            float!(1.0).min(grad_norm.powi(3) / (self.radius * wdp))
        };

        let new_param = grad.mul(&(-tau * self.radius / grad_norm));
        Ok((state.param(new_param), None))
    }

    fn terminate(&mut self, state: &IterState<P, G, (), H, (), F>) -> TerminationStatus {
        // Not an iterative algorithm
        if state.get_iter() >= 1 {
            TerminationStatus::Terminated(TerminationReason::MaxItersReached)
        } else {
            TerminationStatus::NotTerminated
        }
    }
}

impl<F> TrustRegionRadius<F> for CauchyPoint<F>
where
    F: ArgminFloat,
{
    /// Set current radius.
    ///
    /// Needed by [`TrustRegion`](`crate::solver::trustregion::TrustRegion`).
    ///
    /// # Example
    ///
    /// ```
    /// use argmin::solver::trustregion::{CauchyPoint, TrustRegionRadius};
    /// let mut cp: CauchyPoint<f64> = CauchyPoint::new();
    /// cp.set_radius(0.8);
    /// ```
    fn set_radius(&mut self, radius: F) {
        self.radius = radius;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::core::{test_utils::TestProblem, ArgminError};
    use approx::assert_relative_eq;

    test_trait_impl!(cauchypoint, CauchyPoint<f64>);

    #[test]
    fn test_new() {
        let cp: CauchyPoint<f64> = CauchyPoint::new();

        let CauchyPoint { radius } = cp;

        assert_eq!(radius.to_ne_bytes(), f64::NAN.to_ne_bytes());
    }

    #[test]
    fn test_next_iter() {
        let param: Vec<f64> = vec![-1.0, 1.0];

        let mut cp: CauchyPoint<f64> = CauchyPoint::new();
        cp.set_radius(1.0);

        // Forgot to initialize the parameter vector
        let state: IterState<Vec<f64>, Vec<f64>, (), Vec<Vec<f64>>, (), f64> = IterState::new();
        let problem = TestProblem::new();
        let res = cp.next_iter(&mut Problem::new(problem), state);
        assert_error!(
            res,
            ArgminError,
            concat!(
                "Not initialized: \"`CauchyPoint` requires an initial parameter vector. Please ",
                "provide an initial guess via `Executor`s `configure` method.\""
            )
        );

        // All good.
        let state: IterState<Vec<f64>, Vec<f64>, (), Vec<Vec<f64>>, (), f64> =
            IterState::new().param(param);
        let problem = TestProblem::new();
        let (mut state_out, kv) = cp.next_iter(&mut Problem::new(problem), state).unwrap();

        assert!(kv.is_none());

        let s_param = state_out.take_param().unwrap();

        assert_relative_eq!(s_param[0], 1.0f64 / 2.0f64.sqrt(), epsilon = f64::EPSILON);
        assert_relative_eq!(s_param[1], -1.0f64 / 2.0f64.sqrt(), epsilon = f64::EPSILON);
    }
}