1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::core::{
    ArgminFloat, Error, Gradient, Hessian, IterState, Problem, Solver, State, TerminationReason,
    TerminationStatus, TrustRegionRadius, KV,
};
use argmin_math::{
    ArgminAdd, ArgminDot, ArgminInv, ArgminL2Norm, ArgminMul, ArgminSub, ArgminWeightedDot,
};
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

/// # Dogleg method
///
/// The Dogleg method computes the intersection of the trust region boundary with a path given by
/// the unconstrained minimum along the steepest descent direction and the optimum of the quadratic
/// approximation of the cost function at the current point.
///
/// ## Requirements on the optimization problem
///
/// The optimization problem is required to implement [`Gradient`] and [`Hessian`].
///
/// ## Reference
///
/// Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(Clone, Debug, Copy, PartialEq, Eq, PartialOrd, Default)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Dogleg<F> {
    /// Radius
    radius: F,
}

impl<F> Dogleg<F>
where
    F: ArgminFloat,
{
    /// Construct a new instance of [`Dogleg`]
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::solver::trustregion::Dogleg;
    /// let dl: Dogleg<f64> = Dogleg::new();
    /// ```
    pub fn new() -> Self {
        Dogleg { radius: F::nan() }
    }
}

impl<O, F, P, H> Solver<O, IterState<P, P, (), H, (), F>> for Dogleg<F>
where
    O: Gradient<Param = P, Gradient = P> + Hessian<Param = P, Hessian = H>,
    P: Clone
        + ArgminMul<F, P>
        + ArgminL2Norm<F>
        + ArgminDot<P, F>
        + ArgminAdd<P, P>
        + ArgminSub<P, P>,
    H: ArgminInv<H> + ArgminDot<P, P>,
    F: ArgminFloat,
{
    fn name(&self) -> &str {
        "Dogleg"
    }

    fn next_iter(
        &mut self,
        problem: &mut Problem<O>,
        mut state: IterState<P, P, (), H, (), F>,
    ) -> Result<(IterState<P, P, (), H, (), F>, Option<KV>), Error> {
        let param = state.take_param().ok_or_else(argmin_error_closure!(
            NotInitialized,
            concat!(
                "`Dogleg` requires an initial parameter vector. ",
                "Please provide an initial guess via `Executor`s `configure` method."
            )
        ))?;

        let g = state
            .take_gradient()
            .map(Result::Ok)
            .unwrap_or_else(|| problem.gradient(&param))?;

        let h = state
            .take_hessian()
            .map(Result::Ok)
            .unwrap_or_else(|| problem.hessian(&param))?;

        let pstar;

        // pb = -H^-1g
        let pb = (h.inv()?).dot(&g).mul(&float!(-1.0));

        if pb.l2_norm() <= self.radius {
            pstar = pb;
        } else {
            // pu = - (g^Tg)/(g^THg) * g
            let pu = g.mul(&(-g.dot(&g) / g.weighted_dot(&h, &g)));

            let k = pb.sub(&pu); // p^b - p^u
            let c = pu.dot(&k); // p^u^T * (p^b - p^u)
            let k = k.dot(&k); // (p^b - p^u)^T (p^b - p^u)
            let u = pu.dot(&pu); // p^u^T p^u

            let delta_squared = self.radius.powi(2);
            let t1 = (c.powi(2) + delta_squared * k - k * u).sqrt();
            let tau = [
                -(t1 + c - k) / k,
                (t1 - c + k) / k,
                (float!(2.0) * c + delta_squared - u) / (float!(2.0) * c),
            ]
            .into_iter()
            // .enumerate()
            // .map(|(i, t)| {
            //     println!("tau{}: {}", i, t);
            //     t
            // })
            .filter(|t| !t.is_nan() && !t.is_infinite() && *t >= float!(0.0) && *t <= float!(2.0))
            .fold(float!(0.0), |acc, t| if t >= acc { t } else { acc });

            if tau >= float!(0.0) && tau < float!(1.0) {
                pstar = pu.mul(&tau);
            } else if tau >= float!(1.0) && tau <= float!(2.0) {
                pstar = pu.add(&pb.sub(&pu).mul(&(tau - float!(1.0))));
            } else {
                return Err(argmin_error!(
                    PotentialBug,
                    "tau is outside the range [0, 2], this is not supposed to happen."
                ));
            }
        }
        Ok((state.param(pstar).gradient(g).hessian(h), None))
    }

    fn terminate(&mut self, state: &IterState<P, P, (), H, (), F>) -> TerminationStatus {
        if state.get_iter() >= 1 {
            TerminationStatus::Terminated(TerminationReason::MaxItersReached)
        } else {
            TerminationStatus::NotTerminated
        }
    }
}

impl<F: ArgminFloat> TrustRegionRadius<F> for Dogleg<F> {
    /// Set current radius.
    ///
    /// Needed by [`TrustRegion`](`crate::solver::trustregion::TrustRegion`).
    ///
    /// # Example
    ///
    /// ```
    /// use argmin::solver::trustregion::{Dogleg, TrustRegionRadius};
    /// let mut dl: Dogleg<f64> = Dogleg::new();
    /// dl.set_radius(0.8);
    /// ```
    fn set_radius(&mut self, radius: F) {
        self.radius = radius;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[cfg(feature = "_ndarrayl")]
    use crate::core::ArgminError;

    test_trait_impl!(dogleg, Dogleg<f64>);

    #[test]
    fn test_new() {
        let dl: Dogleg<f64> = Dogleg::new();

        let Dogleg { radius } = dl;

        assert_eq!(radius.to_ne_bytes(), f64::NAN.to_ne_bytes());
    }

    #[cfg(feature = "_ndarrayl")]
    #[test]
    fn test_next_iter() {
        use approx::assert_relative_eq;
        use ndarray::{Array, Array1, Array2};

        struct TestProblem {}

        impl Gradient for TestProblem {
            type Param = Array1<f64>;
            type Gradient = Array1<f64>;

            fn gradient(&self, _p: &Self::Param) -> Result<Self::Gradient, Error> {
                Ok(Array1::from_vec(vec![0.5, 2.0]))
            }
        }

        impl Hessian for TestProblem {
            type Param = Array1<f64>;
            type Hessian = Array2<f64>;

            fn hessian(&self, _p: &Self::Param) -> Result<Self::Hessian, Error> {
                Ok(Array::from_shape_vec((2, 2), vec![1f64, 2.0, 3.0, 4.0])?)
            }
        }

        let param: Array1<f64> = Array1::from_vec(vec![-1.0, 1.0]);

        let mut dl: Dogleg<f64> = Dogleg::new();
        dl.set_radius(1.0);

        // Forgot to initialize the parameter vector
        let state: IterState<Array1<f64>, Array1<f64>, (), Array2<f64>, (), f64> = IterState::new();
        let problem = TestProblem {};
        let res = dl.next_iter(&mut Problem::new(problem), state);
        assert_error!(
            res,
            ArgminError,
            concat!(
                "Not initialized: \"`Dogleg` requires an initial parameter vector. Please ",
                "provide an initial guess via `Executor`s `configure` method.\""
            )
        );

        // All good.
        let state: IterState<Array1<f64>, Array1<f64>, (), Array2<f64>, (), f64> =
            IterState::new().param(param);
        let problem = TestProblem {};
        let (mut state_out, kv) = dl.next_iter(&mut Problem::new(problem), state).unwrap();

        assert!(kv.is_none());

        let s_param = state_out.take_param().unwrap();

        assert_relative_eq!(s_param[0], -0.9730617585026127, epsilon = f64::EPSILON);
        assert_relative_eq!(s_param[1], 0.2305446033629983, epsilon = f64::EPSILON);
    }
}