1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::core::{
    ArgminFloat, CostFunction, Error, Executor, Gradient, Hessian, IterState, OptimizationResult,
    Problem, Solver, TerminationStatus, TrustRegionRadius, KV,
};
use crate::solver::trustregion::reduction_ratio;
use argmin_math::{ArgminAdd, ArgminDot, ArgminL2Norm, ArgminWeightedDot};
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

/// # Trust region method
///
/// The trust region method approximates the cost function within a certain region around the
/// current point in parameter space. Depending on the quality of this approximation, the region is
/// either expanded or contracted.
///
/// The calculation of the actual step length and direction is performed by a method which
/// implements [`TrustRegionRadius`](`crate::solver::trustregion::TrustRegionRadius`), such as:
///
/// * [Cauchy point](`crate::solver::trustregion::CauchyPoint`)
/// * [Dogleg method](`crate::solver::trustregion::Dogleg`)
/// * [Steihaug method](`crate::solver::trustregion::Steihaug`)
///
/// ## Requirements on the optimization problem
///
/// The optimization problem is required to implement [`CostFunction`], [`Gradient`] and
/// [`Hessian`].
///
/// ## Reference
///
/// Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct TrustRegion<R, F> {
    /// Radius
    radius: F,
    /// Maximum radius
    max_radius: F,
    /// eta \in [0, 1/4)
    eta: F,
    /// subproblem (must implement [`crate::solver::trustregion::TrustRegionRadius`])
    subproblem: R,
    /// f(xk)
    fxk: F,
    /// mk(0)
    mk0: F,
}

impl<R, F> TrustRegion<R, F>
where
    F: ArgminFloat,
{
    /// Construct a new instance of [`TrustRegion`]
    ///
    /// # Example
    ///
    /// ```
    /// use argmin::solver::trustregion::{CauchyPoint, TrustRegion};
    /// let cp: CauchyPoint<f64> = CauchyPoint::new();
    /// let tr: TrustRegion<_, f64> = TrustRegion::new(cp);
    /// ```
    pub fn new(subproblem: R) -> Self {
        TrustRegion {
            radius: float!(1.0),
            max_radius: float!(100.0),
            eta: float!(0.125),
            subproblem,
            fxk: F::nan(),
            mk0: F::nan(),
        }
    }

    /// Set radius
    ///
    /// Defaults to `1.0`.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::solver::trustregion::{TrustRegion, CauchyPoint};
    /// # use argmin::core::Error;
    /// # fn main() -> Result<(), Error> {
    /// let cp: CauchyPoint<f64> = CauchyPoint::new();
    /// let tr: TrustRegion<_, f64> = TrustRegion::new(cp).with_radius(0.8)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn with_radius(mut self, radius: F) -> Result<Self, Error> {
        if radius <= float!(0.0) {
            return Err(argmin_error!(
                InvalidParameter,
                "`TrustRegion`: radius must be > 0."
            ));
        }
        self.radius = radius;
        Ok(self)
    }

    /// Set maximum radius
    ///
    /// Defaults to `100.0`.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::solver::trustregion::{TrustRegion, CauchyPoint};
    /// # use argmin::core::Error;
    /// # fn main() -> Result<(), Error> {
    /// let cp: CauchyPoint<f64> = CauchyPoint::new();
    /// let tr: TrustRegion<_, f64> = TrustRegion::new(cp).with_max_radius(1000.0)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn with_max_radius(mut self, max_radius: F) -> Result<Self, Error> {
        if max_radius <= float!(0.0) {
            return Err(argmin_error!(
                InvalidParameter,
                "`TrustRegion`: maximum radius must be > 0."
            ));
        }
        self.max_radius = max_radius;
        Ok(self)
    }

    /// Set eta
    ///
    /// Must lie in `[0, 1/4)` and defaults to `0.125`.
    ///
    /// # Example
    ///
    /// ```
    /// # use argmin::solver::trustregion::{TrustRegion, CauchyPoint};
    /// # use argmin::core::Error;
    /// # fn main() -> Result<(), Error> {
    /// let cp: CauchyPoint<f64> = CauchyPoint::new();
    /// let tr: TrustRegion<_, f64> = TrustRegion::new(cp).with_eta(0.2)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn with_eta(mut self, eta: F) -> Result<Self, Error> {
        if eta >= float!(0.25) || eta < float!(0.0) {
            return Err(argmin_error!(
                InvalidParameter,
                "`TrustRegion`: eta must be in [0, 1/4)."
            ));
        }
        self.eta = eta;
        Ok(self)
    }
}

impl<O, R, F, P, G, H> Solver<O, IterState<P, G, (), H, (), F>> for TrustRegion<R, F>
where
    O: CostFunction<Param = P, Output = F>
        + Gradient<Param = P, Gradient = G>
        + Hessian<Param = P, Hessian = H>,
    P: Clone + ArgminL2Norm<F> + ArgminDot<P, F> + ArgminDot<G, F> + ArgminAdd<P, P>,
    G: Clone,
    H: Clone + ArgminDot<P, P>,
    R: Clone + TrustRegionRadius<F> + Solver<O, IterState<P, G, (), H, (), F>>,
    F: ArgminFloat,
{
    fn name(&self) -> &str {
        "Trust region"
    }

    fn init(
        &mut self,
        problem: &mut Problem<O>,
        mut state: IterState<P, G, (), H, (), F>,
    ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error> {
        let param = state.take_param().ok_or_else(argmin_error_closure!(
            NotInitialized,
            concat!(
                "`TrustRegion` requires an initial parameter vector. ",
                "Please provide an initial guess via `Executor`s `configure` method."
            )
        ))?;

        let grad = state
            .take_gradient()
            .map(Result::Ok)
            .unwrap_or_else(|| problem.gradient(&param))?;

        let hessian = state
            .take_hessian()
            .map(Result::Ok)
            .unwrap_or_else(|| problem.hessian(&param))?;

        let cost = state.get_cost();
        self.fxk = if cost.is_infinite() && cost.is_sign_positive() {
            problem.cost(&param)?
        } else {
            cost
        };

        self.mk0 = self.fxk;
        Ok((
            state
                .param(param)
                .cost(self.fxk)
                .gradient(grad)
                .hessian(hessian),
            None,
        ))
    }

    fn next_iter(
        &mut self,
        problem: &mut Problem<O>,
        mut state: IterState<P, G, (), H, (), F>,
    ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error> {
        let param = state.take_param().ok_or_else(argmin_error_closure!(
            PotentialBug,
            "`TrustRegion`: Parameter vector in state not set."
        ))?;

        let grad = state.take_gradient().ok_or_else(argmin_error_closure!(
            PotentialBug,
            "`TrustRegion`: Gradient in state not set."
        ))?;

        let hessian = state.take_hessian().ok_or_else(argmin_error_closure!(
            PotentialBug,
            "`TrustRegion`: Hessian in state not set."
        ))?;

        self.subproblem.set_radius(self.radius);

        let OptimizationResult {
            problem: sub_problem,
            state: mut sub_state,
            ..
        } = Executor::new(problem.take_problem().unwrap(), self.subproblem.clone())
            .configure(|config| {
                config
                    .param(param.clone())
                    .gradient(grad.clone())
                    .hessian(hessian.clone())
            })
            .ctrlc(false)
            .run()?;

        let pk = sub_state.take_param().unwrap();

        // Consume intermediate problem again. This takes care of the function evaluation counts.
        problem.consume_problem(sub_problem);

        let new_param = pk.add(&param);
        let fxkpk = problem.cost(&new_param)?;
        let mkpk = self.fxk + pk.dot(&grad) + float!(0.5) * pk.weighted_dot(&hessian, &pk);

        let rho = reduction_ratio(self.fxk, fxkpk, self.mk0, mkpk);

        let pk_norm = pk.l2_norm();

        let cur_radius = self.radius;

        self.radius = if rho < float!(0.25) {
            float!(0.25) * pk_norm
        } else if rho > float!(0.75) && (pk_norm - self.radius).abs() <= float!(10.0) * F::epsilon()
        {
            self.max_radius.min(float!(2.0) * self.radius)
        } else {
            self.radius
        };

        Ok((
            if rho > self.eta {
                self.fxk = fxkpk;
                self.mk0 = fxkpk;
                let grad = problem.gradient(&new_param)?;
                let hessian = problem.hessian(&new_param)?;
                state
                    .param(new_param)
                    .cost(fxkpk)
                    .gradient(grad)
                    .hessian(hessian)
            } else {
                state
                    .param(param)
                    .cost(self.fxk)
                    .gradient(grad)
                    .hessian(hessian)
            },
            Some(kv!("radius" => cur_radius;)),
        ))
    }

    fn terminate(&mut self, _state: &IterState<P, G, (), H, (), F>) -> TerminationStatus {
        TerminationStatus::NotTerminated
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::core::test_utils::TestProblem;
    use crate::core::{ArgminError, State};
    use crate::solver::trustregion::{CauchyPoint, Steihaug};

    test_trait_impl!(trustregion, TrustRegion<Steihaug<TestProblem, f64>, f64>);

    #[test]
    fn test_new() {
        let cp: CauchyPoint<f64> = CauchyPoint::new();
        let tr: TrustRegion<_, f64> = TrustRegion::new(cp);

        let TrustRegion {
            radius,
            max_radius,
            eta,
            subproblem: _,
            fxk,
            mk0,
        } = tr;

        assert_eq!(radius.to_ne_bytes(), 1.0f64.to_ne_bytes());
        assert_eq!(max_radius.to_ne_bytes(), 100.0f64.to_ne_bytes());
        assert_eq!(eta.to_ne_bytes(), 0.125f64.to_ne_bytes());
        assert_eq!(fxk.to_ne_bytes(), f64::NAN.to_ne_bytes());
        assert_eq!(mk0.to_ne_bytes(), f64::NAN.to_ne_bytes());
    }

    #[test]
    fn test_with_radius() {
        // correct parameters
        for radius in [f64::EPSILON, 1e-2, 1.0, 2.0, 10.0, 100.0] {
            let cp: CauchyPoint<f64> = CauchyPoint::new();
            let tr: TrustRegion<_, f64> = TrustRegion::new(cp);
            let res = tr.with_radius(radius);
            assert!(res.is_ok());

            let nm = res.unwrap();
            assert_eq!(nm.radius.to_ne_bytes(), radius.to_ne_bytes());
        }

        // incorrect parameters
        for radius in [0.0, -f64::EPSILON, -1.0, -100.0, -42.0] {
            let cp: CauchyPoint<f64> = CauchyPoint::new();
            let tr: TrustRegion<_, f64> = TrustRegion::new(cp);
            let res = tr.with_radius(radius);
            assert_error!(
                res,
                ArgminError,
                "Invalid parameter: \"`TrustRegion`: radius must be > 0.\""
            );
        }
    }

    #[test]
    fn test_with_eta() {
        // correct parameters
        for eta in [0.0, f64::EPSILON, 1e-2, 0.125, 0.25 - f64::EPSILON] {
            let cp: CauchyPoint<f64> = CauchyPoint::new();
            let tr: TrustRegion<_, f64> = TrustRegion::new(cp);
            let res = tr.with_eta(eta);
            assert!(res.is_ok());

            let nm = res.unwrap();
            assert_eq!(nm.eta.to_ne_bytes(), eta.to_ne_bytes());
        }

        // incorrect parameters
        for eta in [-f64::EPSILON, -1.0, -100.0, -42.0, 0.25, 1.0] {
            let cp: CauchyPoint<f64> = CauchyPoint::new();
            let tr: TrustRegion<_, f64> = TrustRegion::new(cp);
            let res = tr.with_eta(eta);
            assert_error!(
                res,
                ArgminError,
                "Invalid parameter: \"`TrustRegion`: eta must be in [0, 1/4).\""
            );
        }
    }

    #[test]
    fn test_init() {
        let param: Vec<f64> = vec![1.0, 2.0];

        let cp: CauchyPoint<f64> = CauchyPoint::new();
        let mut tr: TrustRegion<_, f64> = TrustRegion::new(cp);

        // Forgot to initialize parameter vector
        let state: IterState<Vec<f64>, Vec<f64>, (), Vec<Vec<f64>>, (), f64> = IterState::new();
        let problem = TestProblem::new();
        let res = tr.init(&mut Problem::new(problem), state);
        assert_error!(
            res,
            ArgminError,
            concat!(
                "Not initialized: \"`TrustRegion` requires an initial parameter vector. Please ",
                "provide an initial guess via `Executor`s `configure` method.\""
            )
        );

        // All good.
        let state: IterState<Vec<f64>, Vec<f64>, (), Vec<Vec<f64>>, (), f64> =
            IterState::new().param(param.clone());
        let problem = TestProblem::new();
        let (mut state_out, kv) = tr.init(&mut Problem::new(problem), state).unwrap();

        assert!(kv.is_none());

        let s_param = state_out.take_param().unwrap();

        assert_eq!(s_param[0].to_ne_bytes(), param[0].to_ne_bytes());
        assert_eq!(s_param[1].to_ne_bytes(), param[1].to_ne_bytes());

        let TrustRegion {
            radius,
            max_radius,
            eta,
            subproblem: _,
            fxk,
            mk0,
        } = tr;

        assert_eq!(radius.to_ne_bytes(), 1.0f64.to_ne_bytes());
        assert_eq!(max_radius.to_ne_bytes(), 100.0f64.to_ne_bytes());
        assert_eq!(eta.to_ne_bytes(), 0.125f64.to_ne_bytes());
        assert_eq!(fxk.to_ne_bytes(), 1.0f64.sqrt().to_ne_bytes());
        assert_eq!(mk0.to_ne_bytes(), 1.0f64.to_ne_bytes());
    }
}