1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! argmin-math provides mathematics related abstractions needed in argmin. It supports
//! implementations of these abstractions for basic `Vec`s and for `ndarray` and `nalgebra`.
//! The traits can of course also be implemented for your own types to make them compatible with
//! argmin.
//!
//! For an introduction on how to use argmin, please also have a look at the
//! [book](https://www.argmin-rs.org/book/).
//!
//! # Usage
//!
//! Add the following line to your dependencies list:
//!
//! ```toml
//! [dependencies]
#![doc = concat!("argmin-math = \"", env!("CARGO_PKG_VERSION"), "\"")]
//! ```
//!
//! This will activate the `primitives` and `vec` features. For other backends see the section
//! below.
//!
//! ## Features
//!
//! Support for the various backends can be switched on via features. Please read this section
//! carefully to the end before choosing a backend.
//!
//! ### Default features
//!
//! | Feature | Default | Comment |
//! |------------------------|---------|-------------------------------------------------------|
//! | `primitives` | yes | basic integer and floating point types |
//! | `vec` | yes | `Vec`s (basic functionality) |
//!
//! ### `ndarray`
//!
//! | Feature | Default | Comment |
//! |---------------------------------|---------|--------------------------------------------------------------------|
//! | `ndarray_latest` | no | latest supported version |
//! | `ndarray_latest-nolinalg` | no | latest supported version without `ndarray-linalg` |
//! | `ndarray_v0_15` | no | version 0.15 with ndarray-linalg 0.16 |
//! | `ndarray_v0_15-nolinalg` | no | version 0.15 without `ndarray-linalg` |
//! | `ndarray_v0_14-nolinalg` | no | version 0.14 without `ndarray-linalg` |
//! | `ndarray_v0_13-nolinalg` | no | version 0.13 without `ndarray-linalg` |
//!
//! Note that the `*-nolinalg*` features do NOT pull in `ndarray-linalg` as a dependency. This
//! avoids linking against a BLAS library. This will however disable the implementation of
//! `ArgminInv`, meaning that any solver which requires the matrix inverse will not work with the
//! `ndarray` backend. It is recommended to use the `*-nolinalg*` options if the matrix inverse is
//! not needed in order to keep the compilation times low and avoid problems when linking against a
//! BLAS library.
//!
//! Using the `ndarray_*` features with `ndarray-linalg` support may require to explicitly choose
//! the `ndarray-linalg` BLAS backend in your `Cargo.toml` (see the [`ndarray-linalg` documentation
//! for details](https://github.com/rust-ndarray/ndarray-linalg)):
//!
//! ```toml
//! ndarray-linalg = { version = "<appropriate_version>", features = ["<linalg_backend>"] }
//! ```
//!
//! ### `nalgebra`
//!
//! | Feature | Default | Comment |
//! |------------------------|---------|------------------------------------------|
//! | `nalgebra_latest` | no | latest supported version |
//! | `nalgebra_v0_32` | no | version 0.32 |
//! | `nalgebra_v0_31` | no | version 0.31 |
//! | `nalgebra_v0_30` | no | version 0.30 |
//! | `nalgebra_v0_29` | no | version 0.29 |
//!
//!
//! ## Choosing a backend
//!
//! It is not possible to activate two versions of the same backend.
//!
//! The features labeled `*latest*` are an alias for the most recent supported version of the
//! respective backend. It is however recommended to explicitly specify the desired version instead
//! of using any of the `*latest*` features (see section about semantic versioning below).
//!
//! The default features `primitives` and `vec` can be turned off in order to only compile the
//! trait definitions. If another backend is chosen, `primitives` will automatically be turned on
//! again.
//!
//! ### Example
//!
//! Activate support for the latest supported `ndarray` version:
//!
//! ```toml
//! [dependencies]
#![doc = concat!("argmin-math = { version = \"", env!("CARGO_PKG_VERSION"), "\", features = [\"ndarray_latest\"] }")]
//! ```
//!
//! # Semantic versioning
//!
//! This crate follows semantic versioning. Adding a new backend or a new version of a backend is
//! not considered a breaking change. However, your code may still break if you use any of the
//! features containing `*latest*`. It is therefore recommended to specify the actual version of the
//! backend you are using.
//!
//! # Contributing
//!
//! You found a bug? Your favorite backend is not supported? Feel free to open an issue or ideally
//! submit a PR.
//!
//! # License
//!
//! Licensed under either of
//!
//! * Apache License, Version 2.0,
//! ([LICENSE-APACHE](https://github.com/argmin-rs/argmin/blob/main/LICENSE-APACHE) or
//! <http://www.apache.org/licenses/LICENSE-2.0>)
//! * MIT License ([LICENSE-MIT](https://github.com/argmin-rs/argmin/blob/main/LICENSE-MIT) or
//! <http://opensource.org/licenses/MIT>)
//!
//! at your option.
//!
//! ## Contribution
//!
//! Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion
//! in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above,
//! without any additional terms or conditions.
#![warn(missing_docs)]
// Explicitly disallow EQ comparison of floats. (This clippy lint is denied by default; however,
// this is just to make sure that it will always stay this way.)
#![deny(clippy::float_cmp)]
cfg_if::cfg_if! {
if #[cfg(feature = "nalgebra_0_32")] {
extern crate nalgebra_0_32 as nalgebra;
} else if #[cfg(feature = "nalgebra_0_31")] {
extern crate nalgebra_0_31 as nalgebra;
} else if #[cfg(feature = "nalgebra_0_30")] {
extern crate nalgebra_0_30 as nalgebra;
} else if #[cfg(feature = "nalgebra_0_29")] {
extern crate nalgebra_0_29 as nalgebra;
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "ndarray_0_15")] {
extern crate ndarray_0_15 as ndarray;
} else if #[cfg(feature = "ndarray_0_14")] {
extern crate ndarray_0_14 as ndarray;
} else if #[cfg(feature = "ndarray_0_13")] {
extern crate ndarray_0_13 as ndarray;
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "ndarray-linalg_0_16")] {
extern crate ndarray_linalg_0_16 as ndarray_linalg;
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "num-complex_0_2")] {
extern crate num_complex_0_2 as num_complex;
} else if #[cfg(feature = "num-complex_0_3")] {
extern crate num_complex_0_3 as num_complex;
} else if #[cfg(feature = "num-complex_0_4")] {
extern crate num_complex_0_4 as num_complex;
}
}
#[cfg(feature = "primitives")]
mod primitives;
#[cfg(feature = "primitives")]
#[allow(unused_imports)]
pub use crate::primitives::*;
#[cfg(feature = "ndarray_all")]
mod ndarray_m;
#[cfg(feature = "ndarray_all")]
#[allow(unused_imports)]
pub use crate::ndarray_m::*;
#[cfg(feature = "nalgebra_all")]
mod nalgebra_m;
#[cfg(feature = "nalgebra_all")]
#[allow(unused_imports)]
pub use crate::nalgebra_m::*;
#[cfg(feature = "vec")]
mod vec;
#[cfg(feature = "vec")]
#[allow(unused_imports)]
pub use crate::vec::*;
// Re-export of types appearing in the api as recommended here: https://www.lurklurk.org/effective-rust/re-export.html
pub use anyhow::Error;
pub use rand::Rng;
/// Dot/scalar product of `T` and `self`
pub trait ArgminDot<T, U> {
/// Dot/scalar product of `T` and `self`
fn dot(&self, other: &T) -> U;
}
/// Dot/scalar product of `T` and `self` weighted by W (p^TWv)
pub trait ArgminWeightedDot<T, U, V> {
/// Dot/scalar product of `T` and `self`
fn weighted_dot(&self, w: &V, vec: &T) -> U;
}
/// Return param vector of all zeros (for now, this is a hack. It should be done better)
pub trait ArgminZero {
/// Return zero(s)
fn zero() -> Self;
}
/// Return the conjugate
pub trait ArgminConj {
/// Return conjugate
#[must_use]
fn conj(&self) -> Self;
}
/// Zero for dynamically sized objects
pub trait ArgminZeroLike {
/// Return zero(s)
#[must_use]
fn zero_like(&self) -> Self;
}
/// Identity matrix
pub trait ArgminEye {
/// Identity matrix of size `n`
fn eye(n: usize) -> Self;
/// Identity matrix of same size as `self`
#[must_use]
fn eye_like(&self) -> Self;
}
/// Add a `T` to `self`
pub trait ArgminAdd<T, U> {
/// Add a `T` to `self`
fn add(&self, other: &T) -> U;
}
/// Subtract a `T` from `self`
pub trait ArgminSub<T, U> {
/// Subtract a `T` from `self`
fn sub(&self, other: &T) -> U;
}
/// (Pointwise) Multiply a `T` with `self`
pub trait ArgminMul<T, U> {
/// (Pointwise) Multiply a `T` with `self`
fn mul(&self, other: &T) -> U;
}
/// (Pointwise) Divide a `T` by `self`
pub trait ArgminDiv<T, U> {
/// (Pointwise) Divide a `T` by `self`
fn div(&self, other: &T) -> U;
}
/// Add a `T` scaled by an `U` to `self`
pub trait ArgminScaledAdd<T, U, V> {
/// Add a `T` scaled by an `U` to `self`
fn scaled_add(&self, factor: &U, vec: &T) -> V;
}
/// Subtract a `T` scaled by an `U` from `self`
pub trait ArgminScaledSub<T, U, V> {
/// Subtract a `T` scaled by an `U` from `self`
fn scaled_sub(&self, factor: &U, vec: &T) -> V;
}
/// Compute the l1-norm (`U`) of `self`
pub trait ArgminL1Norm<U> {
/// Compute the l1-norm (`U`) of `self`
fn l1_norm(&self) -> U;
}
/// Compute the l2-norm (`U`) of `self`
pub trait ArgminL2Norm<U> {
/// Compute the l2-norm (`U`) of `self`
fn l2_norm(&self) -> U;
}
// Sub-optimal: self is moved. ndarray however offers array views...
/// Return the transpose (`U`) of `self`
pub trait ArgminTranspose<U> {
/// Transpose
fn t(self) -> U;
}
/// Compute the inverse (`T`) of `self`
pub trait ArgminInv<T> {
/// Compute the inverse
fn inv(&self) -> Result<T, Error>;
}
/// Create a random number
pub trait ArgminRandom {
/// Get a random element between min and max,
fn rand_from_range<R: Rng>(min: &Self, max: &Self, rng: &mut R) -> Self;
}
/// Minimum and Maximum of type `T`
pub trait ArgminMinMax {
/// Select piecewise minimum
fn min(x: &Self, y: &Self) -> Self;
/// Select piecewise maximum
fn max(x: &Self, y: &Self) -> Self;
}
/// Returns a number that represents the sign of `self`.
pub trait ArgminSignum {
/// Returns a number that represents the sign of `self`.
fn signum(self) -> Self;
}