1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! argmin-math provides mathematics related abstractions needed in argmin. It supports
//! implementations of these abstractions for basic `Vec`s and for `ndarray` and `nalgebra`.
//! The traits can of course also be implemented for your own types to make them compatible with
//! argmin.
//!
//! For an introduction on how to use argmin, please also have a look at the
//! [book](https://www.argmin-rs.org/book/).
//!
//! # Usage
//!
//! Add the following line to your dependencies list:
//!
//! ```toml
//! [dependencies]
#![doc = concat!("argmin-math = \"", env!("CARGO_PKG_VERSION"), "\"")]
//! ```
//!
//! This will activate the `primitives` and `vec` features. For other backends see the section
//! below.
//!
//! ## Features
//!
//! Support for the various backends can be switched on via features. Please read this section
//! carefully to the end before choosing a backend.
//!
//! ### Default features
//!
//! | Feature                | Default | Comment                                               |
//! |------------------------|---------|-------------------------------------------------------|
//! | `primitives`           | yes     | basic integer and floating point types                |
//! | `vec`                  | yes     | `Vec`s (basic functionality)                          |
//!
//! ### `ndarray`
//!
//! | Feature                         | Default | Comment                                                            |
//! |---------------------------------|---------|--------------------------------------------------------------------|
//! | `ndarray_latest`                | no      | latest supported version                                           |
//! | `ndarray_latest-nolinalg`       | no      | latest supported version without `ndarray-linalg`                  |
//! | `ndarray_v0_15`                 | no      | version 0.15 with ndarray-linalg 0.16                              |
//! | `ndarray_v0_15-nolinalg`        | no      | version 0.15 without `ndarray-linalg`                              |
//! | `ndarray_v0_14-nolinalg`        | no      | version 0.14 without `ndarray-linalg`                              |
//! | `ndarray_v0_13-nolinalg`        | no      | version 0.13 without `ndarray-linalg`                              |
//!
//! Note that the `*-nolinalg*` features do NOT pull in `ndarray-linalg` as a dependency. This
//! avoids linking against a BLAS library. This will however disable the implementation of
//! `ArgminInv`, meaning that any solver which requires the matrix inverse will not work with the
//! `ndarray` backend. It is recommended to use the `*-nolinalg*` options if the matrix inverse is
//! not needed in order to keep the compilation times low and avoid problems when linking against a
//! BLAS library.
//!
//! Using the `ndarray_*` features with `ndarray-linalg` support may require to explicitly choose
//! the `ndarray-linalg` BLAS backend in your `Cargo.toml` (see the [`ndarray-linalg` documentation
//! for details](https://github.com/rust-ndarray/ndarray-linalg)):
//!
//! ```toml
//! ndarray-linalg = { version = "<appropriate_version>", features = ["<linalg_backend>"] }
//! ```
//!
//! ### `nalgebra`
//!
//! | Feature                | Default | Comment                                  |
//! |------------------------|---------|------------------------------------------|
//! | `nalgebra_latest`      | no      | latest supported version                 |
//! | `nalgebra_v0_33`       | no      | version 0.33                             |
//! | `nalgebra_v0_32`       | no      | version 0.32                             |
//! | `nalgebra_v0_31`       | no      | version 0.31                             |
//! | `nalgebra_v0_30`       | no      | version 0.30                             |
//! | `nalgebra_v0_29`       | no      | version 0.29                             |
//!
//!
//! ## Choosing a backend
//!
//! It is not possible to activate two versions of the same backend.
//!
//! The features labeled `*latest*` are an alias for the most recent supported version of the
//! respective backend. It is however recommended to explicitly specify the desired version instead
//! of using any of the `*latest*` features (see section about semantic versioning below).
//!
//! The default features `primitives` and `vec` can be turned off in order to only compile the
//! trait definitions. If another backend is chosen, `primitives` will automatically be turned on
//! again.
//!
//! ### Example
//!
//! Activate support for the latest supported `ndarray` version:
//!
//! ```toml
//! [dependencies]
#![doc = concat!("argmin-math = { version = \"", env!("CARGO_PKG_VERSION"), "\", features = [\"ndarray_latest\"] }")]
//! ```
//!
//! # Semantic versioning
//!
//! This crate follows semantic versioning. Adding a new backend or a new version of a backend is
//! not considered a breaking change. However, your code may still break if you use any of the
//! features containing `*latest*`. It is therefore recommended to specify the actual version of the
//! backend you are using.
//!
//! # Contributing
//!
//! You found a bug? Your favorite backend is not supported? Feel free to open an issue or ideally
//! submit a PR.
//!
//! # License
//!
//! Licensed under either of
//!
//!   * Apache License, Version 2.0,
//!     ([LICENSE-APACHE](https://github.com/argmin-rs/argmin/blob/main/LICENSE-APACHE) or
//!     <http://www.apache.org/licenses/LICENSE-2.0>)
//!   * MIT License ([LICENSE-MIT](https://github.com/argmin-rs/argmin/blob/main/LICENSE-MIT) or
//!     <http://opensource.org/licenses/MIT>)
//!
//! at your option.
//!
//! ## Contribution
//!
//! Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion
//! in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above,
//! without any additional terms or conditions.

#![warn(missing_docs)]
// Explicitly disallow EQ comparison of floats. (This clippy lint is denied by default; however,
// this is just to make sure that it will always stay this way.)
#![deny(clippy::float_cmp)]

cfg_if::cfg_if! {
    if #[cfg(feature = "nalgebra_0_33")] {
        extern crate nalgebra_0_33 as nalgebra;
        trait Allocator<T, R, C = nalgebra::U1>: nalgebra::allocator::Allocator<R, C>
        where
            R: nalgebra::Dim,
            C: nalgebra::Dim,
        {}
        impl<T, R, C, U> Allocator<T, R, C> for U
        where
            U: nalgebra::allocator::Allocator<R, C>,
            R: nalgebra::Dim,
            C: nalgebra::Dim,
        {}
        trait SameShapeAllocator<T, R1, C1, R2, C2>: nalgebra::allocator::SameShapeAllocator<R1, C1, R2, C2>
        where
            R1: nalgebra::Dim,
            C1: nalgebra::Dim,
            R2: nalgebra::Dim,
            C2: nalgebra::Dim,
            nalgebra::constraint::ShapeConstraint: nalgebra::constraint::SameNumberOfRows<R1,R2> + nalgebra::constraint::SameNumberOfColumns<C1,C2>,
        {}
        impl<T, R1, C1, R2, C2, U> SameShapeAllocator<T, R1, C1, R2, C2> for U
        where
            U: nalgebra::allocator::SameShapeAllocator<R1, C1, R2, C2>,
            R1: nalgebra::Dim,
            C1: nalgebra::Dim,
            R2: nalgebra::Dim,
            C2: nalgebra::Dim,
            nalgebra::constraint::ShapeConstraint: nalgebra::constraint::SameNumberOfRows<R1,R2> + nalgebra::constraint::SameNumberOfColumns<C1,C2>,
        {}
        use nalgebra::{
            ClosedAddAssign as ClosedAdd,
            ClosedSubAssign as ClosedSub,
            ClosedDivAssign as ClosedDiv,
            ClosedMulAssign as ClosedMul,
        };
    } else if #[cfg(feature = "nalgebra_0_32")] {
        extern crate nalgebra_0_32 as nalgebra;
        use nalgebra::allocator::{Allocator, SameShapeAllocator};
        use nalgebra::{ClosedAdd, ClosedSub, ClosedDiv, ClosedMul};
    } else if #[cfg(feature = "nalgebra_0_31")] {
        extern crate nalgebra_0_31 as nalgebra;
        use nalgebra::allocator::{Allocator, SameShapeAllocator};
        use nalgebra::{ClosedAdd, ClosedSub, ClosedDiv, ClosedMul};
    } else if #[cfg(feature = "nalgebra_0_30")] {
        extern crate nalgebra_0_30 as nalgebra;
        use nalgebra::allocator::{Allocator, SameShapeAllocator};
        use nalgebra::{ClosedAdd, ClosedSub, ClosedDiv, ClosedMul};
    } else if #[cfg(feature = "nalgebra_0_29")] {
        extern crate nalgebra_0_29 as nalgebra;
        use nalgebra::allocator::{Allocator, SameShapeAllocator};
        use nalgebra::{ClosedAdd, ClosedSub, ClosedDiv, ClosedMul};
    }
}

cfg_if::cfg_if! {
    if #[cfg(feature = "ndarray_0_15")] {
        extern crate ndarray_0_15 as ndarray;
    } else if #[cfg(feature = "ndarray_0_14")]  {
        extern crate ndarray_0_14 as ndarray;
    } else if #[cfg(feature = "ndarray_0_13")]  {
        extern crate ndarray_0_13 as ndarray;
    }
}

cfg_if::cfg_if! {
    if #[cfg(feature = "ndarray-linalg_0_16")] {
        extern crate ndarray_linalg_0_16 as ndarray_linalg;
    }
}

cfg_if::cfg_if! {
    if #[cfg(feature = "num-complex_0_2")] {
        extern crate num_complex_0_2 as num_complex;
    } else if #[cfg(feature = "num-complex_0_3")] {
        extern crate num_complex_0_3 as num_complex;
    } else if #[cfg(feature = "num-complex_0_4")] {
        extern crate num_complex_0_4 as num_complex;
    }
}

#[cfg(feature = "primitives")]
mod primitives;
#[cfg(feature = "primitives")]
#[allow(unused_imports)]
pub use crate::primitives::*;

#[cfg(feature = "ndarray_all")]
mod ndarray_m;
#[cfg(feature = "ndarray_all")]
#[allow(unused_imports)]
pub use crate::ndarray_m::*;

#[cfg(feature = "nalgebra_all")]
mod nalgebra_m;
#[cfg(feature = "nalgebra_all")]
#[allow(unused_imports)]
pub use crate::nalgebra_m::*;

#[cfg(feature = "vec")]
mod vec;
#[cfg(feature = "vec")]
#[allow(unused_imports)]
pub use crate::vec::*;

// Re-export of types appearing in the api as recommended here: https://www.lurklurk.org/effective-rust/re-export.html
pub use anyhow::Error;
pub use rand::Rng;

/// Dot/scalar product of `T` and `self`
pub trait ArgminDot<T, U> {
    /// Dot/scalar product of `T` and `self`
    fn dot(&self, other: &T) -> U;
}

/// Dot/scalar product of `T` and `self` weighted by W (p^TWv)
pub trait ArgminWeightedDot<T, U, V> {
    /// Dot/scalar product of `T` and `self`
    fn weighted_dot(&self, w: &V, vec: &T) -> U;
}

/// Return param vector of all zeros (for now, this is a hack. It should be done better)
pub trait ArgminZero {
    /// Return zero(s)
    fn zero() -> Self;
}

/// Return the conjugate
pub trait ArgminConj {
    /// Return conjugate
    #[must_use]
    fn conj(&self) -> Self;
}

/// Zero for dynamically sized objects
pub trait ArgminZeroLike {
    /// Return zero(s)
    #[must_use]
    fn zero_like(&self) -> Self;
}

/// Identity matrix
pub trait ArgminEye {
    /// Identity matrix of size `n`
    fn eye(n: usize) -> Self;
    /// Identity matrix of same size as `self`
    #[must_use]
    fn eye_like(&self) -> Self;
}

/// Add a `T` to `self`
pub trait ArgminAdd<T, U> {
    /// Add a `T` to `self`
    fn add(&self, other: &T) -> U;
}

/// Subtract a `T` from `self`
pub trait ArgminSub<T, U> {
    /// Subtract a `T` from `self`
    fn sub(&self, other: &T) -> U;
}

/// (Pointwise) Multiply a `T` with `self`
pub trait ArgminMul<T, U> {
    /// (Pointwise) Multiply a `T` with `self`
    fn mul(&self, other: &T) -> U;
}

/// (Pointwise) Divide a `T` by `self`
pub trait ArgminDiv<T, U> {
    /// (Pointwise) Divide a `T` by `self`
    fn div(&self, other: &T) -> U;
}

/// Add a `T` scaled by an `U` to `self`
pub trait ArgminScaledAdd<T, U, V> {
    /// Add a `T` scaled by an `U` to `self`
    fn scaled_add(&self, factor: &U, vec: &T) -> V;
}

/// Subtract a `T` scaled by an `U` from `self`
pub trait ArgminScaledSub<T, U, V> {
    /// Subtract a `T` scaled by an `U` from `self`
    fn scaled_sub(&self, factor: &U, vec: &T) -> V;
}

/// Compute the l1-norm (`U`) of `self`
pub trait ArgminL1Norm<U> {
    /// Compute the l1-norm (`U`) of `self`
    fn l1_norm(&self) -> U;
}

/// Compute the l2-norm (`U`) of `self`
pub trait ArgminL2Norm<U> {
    /// Compute the l2-norm (`U`) of `self`
    fn l2_norm(&self) -> U;
}

// Sub-optimal: self is moved. ndarray however offers array views...
/// Return the transpose (`U`) of `self`
pub trait ArgminTranspose<U> {
    /// Transpose
    fn t(self) -> U;
}

/// Compute the inverse (`T`) of `self`
pub trait ArgminInv<T> {
    /// Compute the inverse
    fn inv(&self) -> Result<T, Error>;
}

/// Create a random number
pub trait ArgminRandom {
    /// Get a random element between min and max,
    fn rand_from_range<R: Rng>(min: &Self, max: &Self, rng: &mut R) -> Self;
}

/// Minimum and Maximum of type `T`
pub trait ArgminMinMax {
    /// Select piecewise minimum
    fn min(x: &Self, y: &Self) -> Self;
    /// Select piecewise maximum
    fn max(x: &Self, y: &Self) -> Self;
}

/// Returns a number that represents the sign of `self`.
pub trait ArgminSignum {
    /// Returns a number that represents the sign of `self`.
    fn signum(self) -> Self;
}