1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # Beale test function
//!
//! Defined as
//!
//! `f(x_1, x_2) = (1.5 - x_1 + x_1 * x_2)^2 + (2.25 - x_1 + x_1 * x_2^2)^2 +
//!                (2.625 - x_1 + x1 * x_2^3)^2`
//!
//! where `x_i \in [-4.5, 4.5]`.
//!
//! The global minimum is at `f(x_1, x_2) = f(3, 0.5) = 0`.

use num::{Float, FromPrimitive};

/// Beale test function
///
/// Defined as
///
/// `f(x_1, x_2) = (1.5 - x_1 + x_1 * x_2)^2 + (2.25 - x_1 + x_1 * x_2^2)^2 +
///                (2.625 - x_1 + x_1 * x_2^3)^2`
///
/// where `x_i \in [-4.5, 4.5]`.
///
/// The global minimum is at `f(x_1, x_2) = f(3, 0.5) = 0`.
pub fn beale<T>(param: &[T; 2]) -> T
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;
    (T::from_f64(1.5).unwrap() - x1 + x1 * x2).powi(2)
        + (T::from_f64(2.25).unwrap() - x1 + x1 * (x2.powi(2))).powi(2)
        + (T::from_f64(2.625).unwrap() - x1 + x1 * (x2.powi(3))).powi(2)
}

/// Derivative of Beale test function
pub fn beale_derivative<T>(param: &[T; 2]) -> [T; 2]
where
    T: Float + FromPrimitive,
{
    let n0_5 = T::from_f64(0.5).unwrap();
    let n1 = T::from_f64(1.0).unwrap();
    let n1_5 = T::from_f64(1.5).unwrap();
    let n2 = T::from_f64(2.0).unwrap();
    let n2_625 = T::from_f64(2.625).unwrap();
    let n3 = T::from_f64(3.0).unwrap();
    let n4_5 = T::from_f64(4.5).unwrap();
    let n5_25 = T::from_f64(5.25).unwrap();
    let n6 = T::from_f64(6.0).unwrap();
    let n12_75 = T::from_f64(12.75).unwrap();

    let [x1, x2] = *param;

    let x2p2 = x2.powi(2);
    let x2p3 = x2.powi(3);
    let x2p4 = x2.powi(4);
    let x2p5 = x2.powi(5);
    let x2p6 = x2.powi(6);

    [
        n5_25 * x2p3
            + n4_5 * x2p2
            + n3 * x2
            + n2 * x1 * (x2p6 + x2p4 - n2 * x2p3 - x2p2 - n2 * x2 + n3)
            - n12_75,
        n6 * x1
            * (n2_625 * x2p2
                + n1_5 * x2
                + x1 * (x2p5 + (n2 / n3) * x2p3 - x2p2 - (n1 / n3) * (x2 + n1))
                + n0_5),
    ]
}

/// Derivative of Beale test function
pub fn beale_hessian<T>(param: &[T; 2]) -> [[T; 2]; 2]
where
    T: Float + FromPrimitive,
{
    let n2 = T::from_f64(2.0).unwrap();
    let n3 = T::from_f64(3.0).unwrap();
    let n4 = T::from_f64(4.0).unwrap();
    let n8 = T::from_f64(8.0).unwrap();
    let n9 = T::from_f64(9.0).unwrap();
    let n12 = T::from_f64(12.0).unwrap();
    let n15_75 = T::from_f64(15.75).unwrap();
    let n30 = T::from_f64(30.0).unwrap();
    let n31_5 = T::from_f64(31.5).unwrap();

    let [x1, x2] = *param;

    let x1p2 = x1.powi(2);
    let x2p2 = x2.powi(2);
    let x2p3 = x2.powi(3);
    let x2p4 = x2.powi(4);
    let x2p5 = x2.powi(5);
    let x2p6 = x2.powi(6);

    let offdiag = n12 * x1 * x2p5 + n8 * x1 * x2p3 - n12 * x1 * x2p2 + n15_75 * x2p2 - n4 * x1 * x2
        + n9 * x2
        - n4 * x1
        + n3;

    [
        [
            n2 * (x2p6 + x2p4 - n2 * x2p3 - x2p2 - n2 * x2 + n3),
            offdiag,
        ],
        [
            offdiag,
            n30 * x1p2 * x2p4 + n12 * x1p2 * x2p2 - n12 * x1p2 * x2 + n31_5 * x1 * x2 - n2 * x1p2
                + n9 * x1,
        ],
    ]
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use finitediff::FiniteDiff;
    use proptest::prelude::*;
    use std::{f32, f64};

    #[test]
    fn test_beale_optimum() {
        assert_relative_eq!(beale(&[3.0_f32, 0.5_f32]), 0.0, epsilon = f32::EPSILON);
        assert_relative_eq!(beale(&[3.0_f64, 0.5_f64]), 0.0, epsilon = f64::EPSILON);
    }

    proptest! {
        #[test]
        fn test_beale_derivative(a in -4.5..4.5, b in -4.5..4.5) {
            let param = [a, b];
            let derivative = beale_derivative(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| beale(&[x[0], x[1]]));
            for i in 0..derivative.len() {
                assert_relative_eq!(derivative[i], derivative_fd[i], epsilon = 1e-2);
            }
        }
    }

    proptest! {
        #[test]
        fn test_beale_hessian_finitediff(a in -4.5..4.5, b in -4.5..4.5) {
            let param = [a, b];
            let hessian = beale_hessian(&param);
            let hessian_fd =
                Vec::from(param).forward_hessian(&|x| beale_derivative(&[x[0], x[1]]).to_vec());
            let n = hessian.len();
            for i in 0..n {
                assert_eq!(hessian[i].len(), n);
                for j in 0..n {
                    assert_relative_eq!(
                        hessian[i][j],
                        hessian_fd[i][j],
                        epsilon = 1e-5,
                        max_relative = 1e-2
                    );
                }
            }
        }
    }
}