argmin_testfunctions/
bukin.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # Bukin test function No. 6
//!
//! Defined as
//!
//! `f(x_1, x_2) = 100*\sqrt{|x_2 - 0.01*x_1^2|} + 0.01 * |x_1 + 10|`
//!
//! where `x_1 \in [-15, -5]` and `x_2 \in [-3, 3]`.
//!
//! The global minimum is at `f(x_1, x_2) = f(-10, 1) = 0`.

use num::{Float, FromPrimitive};

/// Bukin test function No. 6
///
/// Defined as
///
/// `f(x_1, x_2) = 100*\sqrt{|x_2 - 0.01*x_1^2|} + 0.01 * |x_1 + 10|`
///
/// where `x_1 \in [-15, -5]` and `x_2 \in [-3, 3]`.
///
/// The global minimum is at `f(x_1, x_2) = f(-10, 1) = 0`.
pub fn bukin_n6<T>(param: &[T; 2]) -> T
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;
    let n001 = T::from_f64(0.01).unwrap();
    let n10 = T::from_f64(10.0).unwrap();
    let n100 = T::from_f64(100.0).unwrap();
    n100 * (x2 - n001 * x1.powi(2)).abs().sqrt() + n001 * (x1 + n10).abs()
}

/// Derivative of Bukin test function No. 6
pub fn bukin_n6_derivative<T>(param: &[T; 2]) -> [T; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let n0 = T::from_f64(0.0).unwrap();
    let n0_01 = T::from_f64(0.01).unwrap();
    let n10 = T::from_f64(10.0).unwrap();
    let n50 = T::from_f64(50.0).unwrap();
    let eps = T::epsilon();

    let denom = (x2 - n0_01 * x1.powi(2)).abs().powi(3).sqrt();
    let tmp = x2 - n0_01 * x1.powi(2);

    if denom.abs() <= eps {
        // Deriviative is actually not defined at optimum. Therefore, as soon as we get close,
        // we'll set the derivative to 0
        [n0, n0]
    } else {
        [
            n0_01 * (x1 + n10).signum() - x1 * tmp / denom,
            n50 * tmp / denom,
        ]
    }
}

/// Hessian of Bukin test function No. 6
pub fn bukin_n6_hessian<T>(param: &[T; 2]) -> [[T; 2]; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let n0 = T::from_f64(0.0).unwrap();
    let n0_01 = T::from_f64(0.01).unwrap();
    let n0_02 = T::from_f64(0.02).unwrap();
    let n0_0001 = T::from_f64(0.0001).unwrap();
    let n0_5 = T::from_f64(0.5).unwrap();
    let n25 = T::from_f64(25.0).unwrap();
    let eps = T::epsilon() * T::from_f64(1e-4).unwrap();

    let tmp = x2 - n0_01 * x1.powi(2);
    let denom = tmp.abs().powi(7).sqrt();

    if denom.abs() <= eps {
        // Hessian is actually not defined at optimum. Therefore, as soon as we get close,
        // we'll set the Hessian to 0
        [[n0, n0], [n0, n0]]
    } else {
        let offdiag = n0_5 * x1 * tmp.powi(2) / denom;
        [
            [
                x2 * (-n0_0001 * x1.powi(4) + n0_02 * x2 * x1.powi(2) - x2.powi(2)) / denom,
                offdiag,
            ],
            [offdiag, -n25 * tmp.powi(2) / denom],
        ]
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use finitediff::FiniteDiff;
    use proptest::prelude::*;
    use std::{f32, f64};

    #[test]
    fn test_bukin_n6_optimum() {
        assert_relative_eq!(bukin_n6(&[-10_f32, 1_f32]), 0.0, epsilon = f32::EPSILON);
        assert_relative_eq!(bukin_n6(&[-10_f64, 1_f64]), 0.0, epsilon = f64::EPSILON);

        let deriv = bukin_n6_derivative(&[-10_f64, 1_f64]);
        for i in 0..2 {
            assert_relative_eq!(deriv[i], 0.0, epsilon = f64::EPSILON);
        }

        let hessian = bukin_n6_hessian(&[-10_f64, 1_f64]);
        for i in 0..2 {
            for j in 0..2 {
                assert_relative_eq!(hessian[i][j], 0.0, epsilon = f64::EPSILON);
            }
        }
    }

    proptest! {
        #[test]
        fn test_bukin_n6_derivative_finitediff(a in -15.0..-5.0, b in -3.0..3.0) {
            let param = [a, b];
            let derivative = bukin_n6_derivative(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| bukin_n6(&[x[0], x[1]]));
            for i in 0..derivative.len() {
                assert_relative_eq!(
                    derivative[i],
                    derivative_fd[i],
                    epsilon = 1e-5,
                    max_relative = 1e-2
                );
            }
        }
    }

    proptest! {
        #[test]
        fn test_bukin_n6_hessian_finitediff(a in -15.0..-5.0, b in -3.0..3.0) {
            let param = [a, b];
            let hessian = bukin_n6_hessian(&param);
            let hessian_fd = Vec::from(param).central_hessian(&|x| bukin_n6_derivative(&[x[0], x[1]]).to_vec());
            let n = hessian.len();
            // println!("1: {a}/{b} {hessian:?}");
            // println!("2: {a}/{b} {hessian_fd:?}");
            for i in 0..n {
                assert_eq!(hessian[i].len(), n);
                for j in 0..n {
                    assert_relative_eq!(
                        hessian[i][j],
                        hessian_fd[i][j],
                        epsilon = 1e-5,
                        max_relative = 1e-2,
                    );
                }
            }
        }
    }
}