argmin_testfunctions/
easom.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # Easom test function
//!
//! Defined as
//!
//! `f(x_1, x_2) = - cos(x_1) * cos(x_2) * exp(-(x_1 - pi)^2 - (x_2 - pi)^2)`
//!
//! where `x_i \in [-100, 100]`.
//!
//! The global minimum is at `f(x_1, x_2) = f(pi, pi) = -1`.

use num::{Float, FromPrimitive};
use std::f64::consts::PI;

/// Easom test function
///
/// Defined as
///
/// `f(x_1, x_2) = - cos(x_1) * cos(x_2) * exp(-(x_1 - pi)^2 - (x_2 - pi)^2)`
///
/// where `x_i \in [-100, 100]`.
///
/// The global minimum is at `f(x_1, x_2) = f(pi, pi) = -1`.
pub fn easom<T>(param: &[T; 2]) -> T
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;
    let pi = T::from_f64(PI).unwrap();
    -x1.cos() * x2.cos() * (-(x1 - pi).powi(2) - (x2 - pi).powi(2)).exp()
}

/// Derivative of Easom test function
pub fn easom_derivative<T>(param: &[T; 2]) -> [T; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let pi = T::from_f64(PI).unwrap();
    let n2 = T::from_f64(2.0).unwrap();

    let factor = (-(x1 - pi).powi(2) - (x2 - pi).powi(2)).exp();

    [
        factor * x2.cos() * (x1.sin() + n2 * x1 * x1.cos() - n2 * pi * x1.cos()),
        factor * x1.cos() * (x2.sin() + n2 * x2 * x2.cos() - n2 * pi * x2.cos()),
    ]
}

/// Hessian of Easom test function
pub fn easom_hessian<T>(param: &[T; 2]) -> [[T; 2]; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let pi = T::from_f64(PI).unwrap();
    let n2 = T::from_f64(2.0).unwrap();
    let n4 = T::from_f64(4.0).unwrap();
    let n3 = T::from_f64(3.0).unwrap();
    let n8 = T::from_f64(8.0).unwrap();

    let x1cos = x1.cos();
    let x1sin = x1.sin();
    let x2cos = x2.cos();
    let x2sin = x2.sin();
    let factor = (-(x1 - pi).powi(2) - (x2 - pi).powi(2)).exp();
    let offdiag = factor * (x1sin + n2 * (x1 - pi) * x1cos) * (n2 * (pi - x2) * x2cos - x2sin);

    [
        [
            factor
                * x2cos
                * (n4 * (pi - x1) * x1sin
                    + (-n4 * x1.powi(2) + n8 * pi * x1 - n4 * pi.powi(2) + n3) * x1cos),
            offdiag,
        ],
        [
            offdiag,
            factor
                * x1cos
                * (n4 * (pi - x2) * x2sin
                    + (-n4 * x2.powi(2) + n8 * pi * x2 - n4 * pi.powi(2) + n3) * x2cos),
        ],
    ]
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use finitediff::FiniteDiff;
    use proptest::prelude::*;
    use std::{f32, f32::consts::PI as PI32, f64, f64::consts::PI as PI64};

    #[test]
    fn test_easom_optimum() {
        assert_relative_eq!(easom(&[PI32, PI32]), -1.0_f32, epsilon = f32::EPSILON);
        assert_relative_eq!(easom(&[PI64, PI64]), -1.0_f64, epsilon = f64::EPSILON);

        let deriv = easom_derivative(&[PI64, PI64]);
        for i in 0..2 {
            assert_relative_eq!(deriv[i], 0.0_f64, epsilon = f64::EPSILON);
        }
    }

    proptest! {
        #[test]
        fn test_easom_derivative_finitediff(a in -100.0..100.0, b in -100.0..100.0) {
            let param = [a, b];
            let derivative = easom_derivative(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| easom(&[x[0], x[1]]));
            for i in 0..derivative.len() {
                assert_relative_eq!(
                    derivative[i],
                    derivative_fd[i],
                    epsilon = 1e-5,
                    max_relative = 1e-2
                );
            }
        }
    }

    proptest! {
        #[test]
        fn test_easom_hessian_finitediff(a in -100.0..100.0, b in -100.0..100.0) {
            let param = [a, b];
            let hessian = easom_hessian(&param);
            let hessian_fd =
                Vec::from(param).forward_hessian(&|x| easom_derivative(&[x[0], x[1]]).to_vec());
            let n = hessian.len();
            for i in 0..n {
                assert_eq!(hessian[i].len(), n);
                for j in 0..n {
                    assert_relative_eq!(
                        hessian[i][j],
                        hessian_fd[i][j],
                        epsilon = 1e-5,
                        max_relative = 1e-2
                    );
                }
            }
        }
    }
}