argmin_testfunctions/
goldsteinprice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # Goldstein-Price test function
//!
//! Defined as
//!
//! `f(x_1, x_2) = [1 + (x_1 + x_2 + 1)^2 * (19 - 14*x_1 + 3*x_1^2 - 14*x_2 + 6*x_1*x_2 + 3*x_2^2)]
//!                * [30 + (2*x_1 - 3*x_2)^2(18 - 32 * x_1 + 12* x_1^2 + 48 * x_2 -
//!                   36 * x_1 * x_2 + 27 * x_2^2) ]`
//!
//! where `x_i \in [-2, 2]`.
//!
//! The global minimum is at `f(x_1, x_2) = f(0, -1) = 3`.

use num::{Float, FromPrimitive};

/// Goldstein-Price test function
///
/// Defined as
///
/// `f(x_1, x_2) = [1 + (x_1 + x_2 + 1)^2 * (19 - 14*x_1 + 3*x_1^2 - 14*x_2 + 6*x_1*x_2 + 3*x_2^2)]
///                * [30 + (2*x_1 - 3*x_2)^2(18 - 32 * x_1 + 12* x_1^2 + 48 * x_2 -
///                   36 * x_1 * x_2 + 27 * x_2^2) ]`
///
/// where `x_i \in [-2, 2]`.
///
/// The global minimum is at `f(x_1, x_2) = f(0, -1) = 3`.
pub fn goldsteinprice<T>(param: &[T; 2]) -> T
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;
    let n1 = T::from_f64(1.0).unwrap();
    let n2 = T::from_f64(2.0).unwrap();
    let n3 = T::from_f64(3.0).unwrap();
    let n6 = T::from_f64(6.0).unwrap();
    let n12 = T::from_f64(12.0).unwrap();
    let n14 = T::from_f64(14.0).unwrap();
    let n18 = T::from_f64(18.0).unwrap();
    let n19 = T::from_f64(19.0).unwrap();
    let n27 = T::from_f64(27.0).unwrap();
    let n30 = T::from_f64(30.0).unwrap();
    let n32 = T::from_f64(32.0).unwrap();
    let n36 = T::from_f64(36.0).unwrap();
    let n48 = T::from_f64(48.0).unwrap();
    (n1 + (x1 + x2 + n1).powi(2)
        * (n19 - n14 * (x1 + x2) + n3 * (x1.powi(2) + x2.powi(2)) + n6 * x1 * x2))
        * (n30
            + (n2 * x1 - n3 * x2).powi(2)
                * (n18 - n32 * x1 + n12 * x1.powi(2) + n48 * x2 - n36 * x1 * x2 + n27 * x2.powi(2)))
}

/// Derivative of Goldstein-Price test function
pub fn goldsteinprice_derivative<T>(param: &[T; 2]) -> [T; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let n1 = T::from_f64(1.0).unwrap();
    let n2 = T::from_f64(2.0).unwrap();
    let n3 = T::from_f64(3.0).unwrap();
    let n4 = T::from_f64(4.0).unwrap();
    let n6 = T::from_f64(6.0).unwrap();
    let n12 = T::from_f64(12.0).unwrap();
    let n14 = T::from_f64(14.0).unwrap();
    let n18 = T::from_f64(18.0).unwrap();
    let n19 = T::from_f64(19.0).unwrap();
    let n24 = T::from_f64(24.0).unwrap();
    let n27 = T::from_f64(27.0).unwrap();
    let n30 = T::from_f64(30.0).unwrap();
    let n32 = T::from_f64(32.0).unwrap();
    let n36 = T::from_f64(36.0).unwrap();
    let n48 = T::from_f64(48.0).unwrap();
    let n54 = T::from_f64(54.0).unwrap();

    let x1s = x1.powi(2);
    let x2s = x2.powi(2);

    [
        (n2 * (x1 + x2 + n1) * (n3 * x1s + n6 * x2 * x1 - n14 * x1 + n3 * x2s - n14 * x2 + n19)
            + (x1 + x2 + n1).powi(2) * (n6 * x1 + n6 * x2 - n14))
            * ((n2 * x1 - n3 * x2).powi(2)
                * (n12 * x1s - n36 * x2 * x1 - n32 * x1 + n27 * x2s + n48 * x2 + n18)
                + n30)
            + ((x1 + x2 + n1).powi(2)
                * (n3 * x1s + n6 * x2 * x1 - n14 * x1 + n3 * x2s - n14 * x2 + n19)
                + n1)
                * (n4
                    * (n2 * x1 - n3 * x2)
                    * (n12 * x1s - n36 * x2 * x1 - n32 * x1 + n27 * x2s + n48 * x2 + n18)
                    + (n2 * x1 - n3 * x2).powi(2) * (n24 * x1 - n36 * x2 - n32)),
        ((x2 + x1 + n1).powi(2) * (n3 * x2s + n6 * x1 * x2 - n14 * x2 + n3 * x1s - n14 * x1 + n19)
            + n1)
            * ((n2 * x1 - n3 * x2).powi(2) * (n54 * x2 - n36 * x1 + n48)
                - n6 * (n2 * x1 - n3 * x2)
                    * (n27 * x2s - n36 * x1 * x2 + n48 * x2 + n12 * x1s - n32 * x1 + n18))
            + (n2
                * (x2 + x1 + n1)
                * (n3 * x2s + n6 * x1 * x2 - n14 * x2 + n3 * x1s - n14 * x1 + n19)
                + (x2 + x1 + n1).powi(2) * (n6 * x2 + n6 * x1 - n14))
                * ((n2 * x1 - n3 * x2).powi(2)
                    * (n27 * x2s - n36 * x1 * x2 + n48 * x2 + n12 * x1s - n32 * x1 + n18)
                    + n30),
    ]
}

/// Hessian of Goldstein-Price test function
pub fn goldsteinprice_hessian<T>(param: &[T; 2]) -> [[T; 2]; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let n840 = T::from_f64(840.0).unwrap();
    let n1296 = T::from_f64(1296.0).unwrap();
    let n2016 = T::from_f64(2016.0).unwrap();
    let n2520 = T::from_f64(2520.0).unwrap();
    let n2916 = T::from_f64(2916.0).unwrap();
    let n3360 = T::from_f64(3360.0).unwrap();
    let n4680 = T::from_f64(4680.0).unwrap();
    let n5184 = T::from_f64(5184.0).unwrap();
    let n5940 = T::from_f64(5940.0).unwrap();
    let n6120 = T::from_f64(6120.0).unwrap();
    let n6432 = T::from_f64(6432.0).unwrap();
    let n6804 = T::from_f64(6804.0).unwrap();
    let n7344 = T::from_f64(7344.0).unwrap();
    let n7440 = T::from_f64(7440.0).unwrap();
    let n7776 = T::from_f64(7776.0).unwrap();
    let n8064 = T::from_f64(8064.0).unwrap();
    let n10080 = T::from_f64(10080.0).unwrap();
    let n10740 = T::from_f64(10740.0).unwrap();
    let n11016 = T::from_f64(11016.0).unwrap();
    let n11160 = T::from_f64(11160.0).unwrap();
    let n11664 = T::from_f64(11664.0).unwrap();
    let n12096 = T::from_f64(12096.0).unwrap();
    let n14688 = T::from_f64(14688.0).unwrap();
    let n15552 = T::from_f64(15552.0).unwrap();
    let n15660 = T::from_f64(15660.0).unwrap();
    let n17352 = T::from_f64(17352.0).unwrap();
    let n17460 = T::from_f64(17460.0).unwrap();
    let n17496 = T::from_f64(17496.0).unwrap();
    let n18360 = T::from_f64(18360.0).unwrap();
    let n19440 = T::from_f64(19440.0).unwrap();
    let n19680 = T::from_f64(19680.0).unwrap();
    let n20880 = T::from_f64(20880.0).unwrap();
    let n23760 = T::from_f64(23760.0).unwrap();
    let n24480 = T::from_f64(24480.0).unwrap();
    let n25920 = T::from_f64(25920.0).unwrap();
    let n26880 = T::from_f64(26880.0).unwrap();
    let n27216 = T::from_f64(27216.0).unwrap();
    let n27540 = T::from_f64(27540.0).unwrap();
    let n28560 = T::from_f64(28560.0).unwrap();
    let n29448 = T::from_f64(29448.0).unwrap();
    let n30240 = T::from_f64(30240.0).unwrap();
    let n30720 = T::from_f64(30720.0).unwrap();
    let n31104 = T::from_f64(31104.0).unwrap();
    let n32256 = T::from_f64(32256.0).unwrap();
    let n34704 = T::from_f64(34704.0).unwrap();
    let n36720 = T::from_f64(36720.0).unwrap();
    let n38592 = T::from_f64(38592.0).unwrap();
    let n38880 = T::from_f64(38880.0).unwrap();
    let n40320 = T::from_f64(40320.0).unwrap();
    let n40824 = T::from_f64(40824.0).unwrap();
    let n41760 = T::from_f64(41760.0).unwrap();
    let n42960 = T::from_f64(42960.0).unwrap();
    let n43740 = T::from_f64(43740.0).unwrap();
    let n47520 = T::from_f64(47520.0).unwrap();
    let n48960 = T::from_f64(48960.0).unwrap();
    let n51840 = T::from_f64(51840.0).unwrap();
    let n58320 = T::from_f64(58320.0).unwrap();
    let n59040 = T::from_f64(59040.0).unwrap();
    let n64440 = T::from_f64(64440.0).unwrap();
    let n69840 = T::from_f64(69840.0).unwrap();
    let n70848 = T::from_f64(70848.0).unwrap();
    let n73440 = T::from_f64(73440.0).unwrap();
    let n73728 = T::from_f64(73728.0).unwrap();
    let n92160 = T::from_f64(92160.0).unwrap();
    let n104760 = T::from_f64(104760.0).unwrap();
    let n132840 = T::from_f64(132840.0).unwrap();
    let n142560 = T::from_f64(142560.0).unwrap();
    let n141696 = T::from_f64(141696.0).unwrap();
    let n172152 = T::from_f64(172152.0).unwrap();

    let x1p2 = x1.powi(2);
    let x1p3 = x1.powi(3);
    let x1p4 = x1.powi(4);
    let x1p5 = x1.powi(5);
    let x1p6 = x1.powi(6);
    let x2p2 = x2.powi(2);
    let x2p3 = x2.powi(3);
    let x2p4 = x2.powi(4);
    let x2p5 = x2.powi(5);
    let x2p6 = x2.powi(6);

    let a = n8064 * x1p6
        + (-n12096 * x2 - n32256) * x1p5
        + (-n19440 * x2p2 + n40320 * x2 + n28560) * x1p4
        + (n24480 * x2p3 + n51840 * x2p2 - n3360 * x2 + n26880) * x1p3
        + (n15660 * x2p4 - n48960 * x2p3 - n64440 * x2p2 - n92160 * x2 - n29448) * x1p2
        + (-n11016 * x2p5 - n20880 * x2p4 + n7440 * x2p3 + n59040 * x2p2 + n34704 * x2 - n6432)
            * x1
        - n2916 * x2p6
        + n7344 * x2p5
        + n17460 * x2p4
        + n10080 * x2p3
        + n15552 * x2p2
        + n14688 * x2
        + n2520;

    let b = n40824 * x2p6
        + (n40824 * x1 - n27216) * x2p5
        + (-n43740 * x1p2 + n58320 * x1 - n132840) * x2p4
        + (-n36720 * x1p3 + n73440 * x1p2 - n23760 * x1 + n38880) * x2p3
        + (n15660 * x1p4 - n41760 * x1p3 + n104760 * x1p2 - n142560 * x1 + n172152) * x2p2
        + (n7344 * x1p5 - n24480 * x1p4 + n7440 * x1p3 + n30240 * x1p2 - n141696 * x1 + n73728)
            * x2
        - n1296 * x1p6
        + n5184 * x1p5
        - n10740 * x1p4
        + n19680 * x1p3
        + n15552 * x1p2
        - n38592 * x1
        + n6120;

    let offdiag = n6804 * x2p6
        + (n11664 - n17496 * x1) * x2p5
        + (-n27540 * x1p2 + n36720 * x1 - n5940) * x2p4
        + (n20880 * x1p3 - n41760 * x1p2 + n69840 * x1 - n47520) * x2p3
        + (n18360 * x1p4 - n48960 * x1p3 + n11160 * x1p2 + n30240 * x1 - n70848) * x2p2
        + (-n7776 * x1p5 + n25920 * x1p4 - n42960 * x1p3 + n59040 * x1p2 + n31104 * x1 - n38592)
            * x2
        - n2016 * x1p6
        + n8064 * x1p5
        - n840 * x1p4
        - n30720 * x1p3
        + n17352 * x1p2
        + n14688 * x1
        - n4680;

    [[a, offdiag], [offdiag, b]]
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use finitediff::FiniteDiff;
    use proptest::prelude::*;
    use std::{f32, f64};

    #[test]
    fn test_goldsteinprice_optimum() {
        assert_relative_eq!(
            goldsteinprice(&[0.0_f32, -1.0_f32]),
            3_f32,
            epsilon = f32::EPSILON
        );
        assert_relative_eq!(
            goldsteinprice(&[0.0_f64, -1.0_f64]),
            3_f64,
            epsilon = f64::EPSILON
        );

        let deriv = goldsteinprice_derivative(&[0.0_f64, -1.0_f64]);
        for i in 0..2 {
            assert_relative_eq!(deriv[i], 0.0, epsilon = f64::EPSILON);
        }
    }

    proptest! {
        #[test]
        fn test_goldsteinprice_derivative_finitediff(a in -2.0..2.0, b in -2.0..2.0) {
            let param = [a, b];
            let derivative = goldsteinprice_derivative(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| goldsteinprice(&[x[0], x[1]]));
            // println!("1: {derivative:?} at {a}/{b}");
            // println!("2: {derivative_fd:?} at {a}/{b}");
            for i in 0..derivative.len() {
                assert_relative_eq!(
                    derivative[i],
                    derivative_fd[i],
                    epsilon = 1e-3,
                    max_relative = 1e-1
                );
            }
        }
    }

    proptest! {
        #[test]
        fn test_goldsteinprice_derivative_finitediff_narrow(a in -0.5..0.5, b in -0.5..0.5) {
            // This evaluates the function on a narrower domain, which allows us to have a lower
            // epsilon, as the function is pretty steep at the boundary, which isn't great for
            // accuracy when using finite differentiation.
            let param = [a, b];
            let derivative = goldsteinprice_derivative(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| goldsteinprice(&[x[0], x[1]]));
            // println!("1: {derivative:?} at {a}/{b}");
            // println!("2: {derivative_fd:?} at {a}/{b}");
            for i in 0..derivative.len() {
                assert_relative_eq!(
                    derivative[i],
                    derivative_fd[i],
                    epsilon = 1e-3,
                    max_relative = 1e-2
                );
            }
        }
    }

    proptest! {
        #[test]
        fn test_goldsteinprice_hessian_finitediff(a in -2.0..2.0, b in -2.0..2.0) {
            let param = [a, b];
            let hessian = goldsteinprice_hessian(&param);
            let hessian_fd =
                Vec::from(param).central_hessian(&|x| goldsteinprice_derivative(&[x[0], x[1]]).to_vec());
            let n = hessian.len();
            // println!("1: {hessian:?} at {a}/{b}");
            // println!("2: {hessian_fd:?} at {a}/{b}");
            for i in 0..n {
                assert_eq!(hessian[i].len(), n);
                for j in 0..n {
                    if hessian_fd[i][j].is_finite() {
                        assert_relative_eq!(
                            hessian[i][j],
                            hessian_fd[i][j],
                            epsilon = 1e-5,
                            max_relative = 1e-1
                        );
                    }
                }
            }
        }
    }

    proptest! {
        #[test]
        fn test_goldsteinprice_hessian_finitediff_narrow(a in -0.5..0.5, b in -0.5..0.5) {
            // This evaluates the function on a narrower domain, which allows us to have a lower
            // epsilon, as the function is pretty steep at the boundary, which isn't great for
            // accuracy when using finite differentiation.
            let param = [a, b];
            let hessian = goldsteinprice_hessian(&param);
            let hessian_fd =
                Vec::from(param).central_hessian(&|x| goldsteinprice_derivative(&[x[0], x[1]]).to_vec());
            let n = hessian.len();
            // println!("1: {hessian:?} at {a}/{b}");
            // println!("2: {hessian_fd:?} at {a}/{b}");
            for i in 0..n {
                assert_eq!(hessian[i].len(), n);
                for j in 0..n {
                    if hessian_fd[i][j].is_finite() {
                        assert_relative_eq!(
                            hessian[i][j],
                            hessian_fd[i][j],
                            epsilon = 1e-5,
                            max_relative = 1e-2
                        );
                    }
                }
            }
        }
    }
}