argmin_testfunctions/mccorminck.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! # McCorminck test function
//!
//! Defined as
//!
//! `f(x_1, x_2) = sin(x_1 + x_2) + (x_1 - x_2)^2 - 1.5*x_1 + 2.5*x_2 + 1`
//!
//! where `x_1 \in [-1.5, 4]` and `x_2 \in [-3, 4]`.
//!
//! The global minimum is at `f(x_1, x_2) = f(-0.54719, -1.54719) = -1.913228`.
use num::{Float, FromPrimitive};
/// McCorminck test function
///
/// Defined as
///
/// `f(x_1, x_2) = sin(x_1 + x_2) + (x_1 - x_2)^2 - 1.5*x_1 + 2.5*x_2 + 1`
///
/// where `x_1 \in [-1.5, 4]` and `x_2 \in [-3, 4]`.
///
/// The global minimum is at `f(x_1, x_2) = f(-0.54719, -1.54719) = -1.913228`.
pub fn mccorminck<T>(param: &[T; 2]) -> T
where
T: Float + FromPrimitive,
{
let [x1, x2] = *param;
(x1 + x2).sin() + (x1 - x2).powi(2) - T::from_f64(1.5).unwrap() * x1
+ T::from_f64(2.5).unwrap() * x2
+ T::from_f64(1.0).unwrap()
}
/// Derivative of McCorminck test function
pub fn mccorminck_derivative<T>(param: &[T; 2]) -> [T; 2]
where
T: Float + FromPrimitive,
{
let [x1, x2] = *param;
let n2 = T::from_f64(2.0).unwrap();
let n3 = T::from_f64(3.0).unwrap();
let n5 = T::from_f64(5.0).unwrap();
[
(x1 + x2).cos() + n2 * (x1 - x2) - n3 / n2,
(x1 + x2).cos() - n2 * (x1 - x2) + n5 / n2,
]
}
/// Hessian of McCorminck test function
pub fn mccorminck_hessian<T>(param: &[T; 2]) -> [[T; 2]; 2]
where
T: Float + FromPrimitive,
{
let [x1, x2] = *param;
let n2 = T::from_f64(2.0).unwrap();
let a = (x1 + x2).sin();
let diag = n2 - a;
let offdiag = -n2 - a;
[[diag, offdiag], [offdiag, diag]]
}
#[cfg(test)]
mod tests {
use super::*;
use approx::assert_relative_eq;
use finitediff::FiniteDiff;
use proptest::prelude::*;
#[test]
fn test_mccorminck_optimum() {
assert_relative_eq!(
mccorminck(&[-0.54719_f32, -1.54719_f32]),
-1.9132228,
epsilon = f32::EPSILON
);
assert_relative_eq!(
mccorminck(&[-0.54719_f64, -1.54719_f64]),
-1.9132229544882274,
epsilon = f32::EPSILON.into()
);
let deriv = mccorminck_derivative(&[-0.54719_f64, -1.54719_f64]);
println!("1: {deriv:?}");
for i in 0..2 {
assert_relative_eq!(deriv[i], 0.0, epsilon = 1e-4);
}
}
proptest! {
#[test]
fn test_mccorminck_derivative_finitediff(a in -1.5..4.0, b in -3.0..4.0) {
let param = [a, b];
let derivative = mccorminck_derivative(¶m);
let derivative_fd = Vec::from(param).central_diff(&|x| mccorminck(&[x[0], x[1]]));
for i in 0..derivative.len() {
assert_relative_eq!(
derivative[i],
derivative_fd[i],
epsilon = 1e-5,
max_relative = 1e-2
);
}
}
}
proptest! {
#[test]
fn test_mccorminck_hessian_finitediff(a in -1.5..4.0, b in -3.0..4.0) {
let param = [a, b];
let hessian = mccorminck_hessian(¶m);
let hessian_fd =
Vec::from(param).central_hessian(&|x| mccorminck_derivative(&[x[0], x[1]]).to_vec());
let n = hessian.len();
// println!("1: {hessian:?} at {a}/{b}");
// println!("2: {hessian_fd:?} at {a}/{b}");
for i in 0..n {
assert_eq!(hessian[i].len(), n);
for j in 0..n {
if hessian_fd[i][j].is_finite() {
assert_relative_eq!(
hessian[i][j],
hessian_fd[i][j],
epsilon = 1e-5,
max_relative = 1e-2
);
}
}
}
}
}
}