argmin_testfunctions/
schaffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # Schaffer test function No. 2
//!
//! Defined as
//!
//! `f(x_1, x_2) = 0.5 + (sin^2(x_1^2 - x_2^2) - 0.5) / (1 + 0.001*(x_1^2 + x_2^2))^2`
//!
//! where `x_i \in [-100, 100]`.
//!
//! The global minimum is at `f(x_1, x_2) = f(0, 0) = 0`.
//!
//! # Schaffer test function No. 4
//!
//! Defined as
//!
//! `f(x_1, x_2) = 0.5 + (cos(sin(abs(x_1^2 - x_2^2)))^2 - 0.5) / (1 + 0.001*(x_1^2 + x_2^2))^2`
//!
//! where `x_i \in [-100, 100]`.
//!
//! The global minimum is at `f(x_1, x_2) = f(0, 1.25313) = 0.291992`.

use num::{Float, FromPrimitive};

/// Schaffer test function No. 2
///
/// Defined as
///
/// `f(x_1, x_2) = 0.5 + (sin^2(x_1^2 - x_2^2) - 0.5) / (1 + 0.001*(x_1^2 + x_2^2))^2`
///
/// where `x_i \in [-100, 100]`.
///
/// The global minimum is at `f(x_1, x_2) = f(0, 0) = 0`.
pub fn schaffer_n2<T>(param: &[T; 2]) -> T
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let n0_001 = T::from_f64(0.001).unwrap();
    let n0_5 = T::from_f64(0.5).unwrap();
    let n1 = T::from_f64(1.0).unwrap();

    n0_5 + ((x1.powi(2) - x2.powi(2)).sin().powi(2) - n0_5)
        / (n1 + n0_001 * (x1.powi(2) + x2.powi(2))).powi(2)
}

/// Derivative of Schaffer test function No. 2
pub fn schaffer_n2_derivative<T>(param: &[T; 2]) -> [T; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let n0_001 = T::from_f64(0.001).unwrap();
    let n0_004 = T::from_f64(0.004).unwrap();
    let n0_5 = T::from_f64(0.5).unwrap();
    let n1 = T::from_f64(1.0).unwrap();
    let n4 = T::from_f64(4.0).unwrap();

    let x1spx2s = x1.powi(2) + x2.powi(2);
    let x1smx2s = x1.powi(2) - x2.powi(2);
    let x2smx1s = x2.powi(2) - x1.powi(2);
    let tmp = n0_001 * x1spx2s + n1;
    let denom2 = tmp.powi(2);
    let denom3 = tmp.powi(3);
    let a = x1smx2s.sin() * x1smx2s.cos();
    let a2 = x2smx1s.sin() * x2smx1s.cos();
    let b = n0_004 * (x1smx2s.sin().powi(2) - n0_5);

    [
        (n4 * x1 * a) / denom2 - (x1 * b) / denom3,
        (n4 * x2 * a2) / denom2 - (x2 * b) / denom3,
    ]
}

/// Hessian of Schaffer test function No. 2
pub fn schaffer_n2_hessian<T>(param: &[T; 2]) -> [[T; 2]; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let n0_001 = T::from_f64(0.001).unwrap();
    let n0_004 = T::from_f64(0.004).unwrap();
    let n0_006 = T::from_f64(0.006).unwrap();
    let n0_032 = T::from_f64(0.032).unwrap();
    let n0_5 = T::from_f64(0.5).unwrap();
    let n1 = T::from_f64(1.0).unwrap();
    let n4 = T::from_f64(4.0).unwrap();
    let n8 = T::from_f64(8.0).unwrap();

    let x1s = x1.powi(2);
    let x2s = x2.powi(2);
    let x1spx2s = x1s + x2s;
    let x1smx2s = x1s - x2s;
    let x2smx1s = x2s - x1s;
    let x1smx2ssin2 = x1smx2s.sin().powi(2);
    let x2smx1ssin2 = x2smx1s.sin().powi(2);
    let x1smx2scos2 = x1smx2s.cos().powi(2);
    let x2smx1scos2 = x2smx1s.cos().powi(2);
    let tmp = n0_001 * x1spx2s + n1;
    let denom2 = tmp.powi(2);
    let denom3 = tmp.powi(3);
    let denom4 = tmp.powi(4);
    let a = x1smx2s.sin() * x1smx2s.cos();
    let a2 = x2smx1s.sin() * x2smx1s.cos();
    let b = n0_004 * (x1smx2ssin2 - n0_5);

    let offdiag =
        (n8 * x1 * x2 * (x1smx2ssin2 - x1smx2scos2)) / denom2 + (n0_006 * x1 * x2 * b) / denom4;

    [
        [
            (-(n8 * x1s * x1smx2ssin2) + (n4 * a) + (n8 * x1s * x1smx2scos2)) / denom2
                - (b + (n0_032 * x1s * a)) / denom3
                + (n0_006 * x1s * b) / denom4,
            offdiag,
        ],
        [
            offdiag,
            (-(n8 * x2s * x2smx1ssin2) + (n4 * a2) + (n8 * x2s * x2smx1scos2)) / denom2
                - (b + (n0_032 * x2s * a2)) / denom3
                + (n0_006 * x2s * b) / denom4,
        ],
    ]
}

/// Schaffer test function No. 4
///
/// Defined as
///
/// `f(x_1, x_2) = 0.5 + (cos(sin(abs(x_1^2 - x_2^2)))^2 - 0.5) / (1 + 0.001*(x_1^2 + x_2^2))^2`
///
/// where `x_i \in [-100, 100]`.
///
/// The global minimum is at `f(x_1, x_2) = f(0, 1.25313) = 0.291992`.
pub fn schaffer_n4<T>(param: &[T; 2]) -> T
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;
    let n05 = T::from_f64(0.5).unwrap();
    let n1 = T::from_f64(1.0).unwrap();
    let n0001 = T::from_f64(0.001).unwrap();
    n05 + ((x1.powi(2) - x2.powi(2)).abs().sin().cos().powi(2) - n05)
        / (n1 + n0001 * (x1.powi(2) + x2.powi(2))).powi(2)
}

/// Derivative of Schaffer test function No. 4
pub fn schaffer_n4_derivative<T>(param: &[T; 2]) -> [T; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;
    let n0_5 = T::from_f64(0.5).unwrap();
    let n1 = T::from_f64(1.0).unwrap();
    let n0_001 = T::from_f64(0.001).unwrap();
    let n0_004 = T::from_f64(0.004).unwrap();
    let n4 = T::from_f64(4.0).unwrap();

    let x1smx2s = x1.powi(2) - x2.powi(2);
    let x2smx1s = x2.powi(2) - x1.powi(2);
    let x1spx2s = x1.powi(2) + x2.powi(2);
    let x1smx2scos = x1smx2s.cos();
    let x2smx1scos = x2smx1s.cos();
    let x1smx2sabs = x1smx2s.abs();
    let x1smx2sabssin = x1smx2sabs.sin();
    let x2smx1sabssin = x1smx2sabs.sin();
    let x1smx2sabssincos = x1smx2sabssin.cos();
    let x1smx2sabssinsin = x1smx2sabssin.sin();
    let x1smx2sabssincos2 = x1smx2sabssin.cos().powi(2);
    let x2smx1sabssincos = x2smx1sabssin.cos();
    let x2smx1sabssinsin = x2smx1sabssin.sin();
    let x2smx1sabssincos2 = x2smx1sabssin.cos().powi(2);
    let denom_a = (n0_001 * x1spx2s + n1).powi(2);
    let denom_b = (n0_001 * x1spx2s + n1).powi(3);

    [
        -(n4 * x1 * x1smx2s * x1smx2scos * x1smx2sabssincos * x1smx2sabssinsin)
            / (denom_a * x1smx2sabs)
            - (n0_004 * x1 * (x1smx2sabssincos2 - n0_5)) / denom_b,
        -(n4 * x2 * x2smx1s * x2smx1scos * x2smx1sabssincos * x2smx1sabssinsin)
            / (denom_a * x1smx2sabs)
            - (n0_004 * x2 * (x2smx1sabssincos2 - n0_5)) / denom_b,
    ]
}

/// Hessian of Schaffer test function No. 4
pub fn schaffer_n4_hessian<T>(param: &[T; 2]) -> [[T; 2]; 2]
where
    T: Float + FromPrimitive,
{
    let [x1, x2] = *param;

    let eps = T::epsilon();
    let n0_5 = T::from_f64(0.5).unwrap();
    let n0 = T::from_f64(0.0).unwrap();
    let n1 = T::from_f64(1.0).unwrap();
    let n0_001 = T::from_f64(0.001).unwrap();
    let n0_004 = T::from_f64(0.004).unwrap();
    let n0_006 = T::from_f64(0.006).unwrap();
    let n0_016 = T::from_f64(0.016).unwrap();
    let n0_032 = T::from_f64(0.032).unwrap();
    let n4 = T::from_f64(4.0).unwrap();
    let n8 = T::from_f64(8.0).unwrap();

    let x1s = x1.powi(2);
    let x2s = x2.powi(2);
    let x1smx2s = x1s - x2s;
    let x2smx1s = x2s - x1s;
    let x1spx2s = x1s + x2s;
    let x1smx2scos = x1smx2s.cos();
    let x1smx2ssin = x1smx2s.sin();
    let x2smx1ssin = x2smx1s.sin();
    let x2smx1scos = x2smx1s.cos();
    let x1smx2scos2 = x1smx2scos.powi(2);
    let x2smx1scos2 = x2smx1scos.powi(2);
    let x1smx2sabs = x1smx2s.abs();
    let x1smx2sabssin = x1smx2sabs.sin();
    let x2smx1sabssin = x1smx2sabs.sin();
    let x1smx2sabssincos = x1smx2sabssin.cos();
    let x1smx2sabssinsin = x1smx2sabssin.sin();
    let x2smx1sabssinsin = x2smx1sabssin.sin();
    let x1smx2sabssinsin2 = x1smx2sabssinsin.powi(2);
    let x2smx1sabssinsin2 = x2smx1sabssinsin.powi(2);
    let x1smx2sabssincos2 = x1smx2sabssin.cos().powi(2);
    let x2smx1sabssincos = x2smx1sabssin.cos();
    let x2smx1sabssinsin = x2smx1sabssin.sin();
    let x2smx1sabssincos2 = x2smx1sabssin.cos().powi(2);
    let denom_a = (n0_001 * x1spx2s + n1).powi(2);
    let denom_b = (n0_001 * x1spx2s + n1).powi(3);
    let denom_c = (n0_001 * x1spx2s + n1).powi(4);

    if x1smx2sabs <= eps {
        [[n0, n0], [n0, n0]]
    } else {
        let a = (n8 * x1s * x1smx2scos2 * x1smx2sabssinsin2
            - n8 * x1s * x1smx2scos2 * x1smx2sabssincos2)
            / denom_a
            + ((n8 * x1s * x1smx2s * x1smx2ssin * x1smx2sabssincos * x1smx2sabssinsin)
                - (n4 * x1smx2s * x1smx2scos * x1smx2sabssincos * x1smx2sabssinsin))
                / (denom_a * x1smx2sabs)
            + (n0_032 * x1s * x1smx2s * x1smx2scos * x1smx2sabssincos * x1smx2sabssinsin)
                / (denom_b * x1smx2sabs)
            + (-n0_004 * (x1smx2sabssincos2 - n0_5)) / denom_b
            + (n0_006 * n0_004 * x1s * (x1smx2sabssincos2 - n0_5)) / denom_c;

        let b = (n8 * x2s * x2smx1scos2 * x2smx1sabssinsin2
            - n8 * x2s * x2smx1scos2 * x2smx1sabssincos2)
            / denom_a
            + ((n8 * x2s * x2smx1s * x2smx1ssin * x2smx1sabssincos * x2smx1sabssinsin)
                - (n4 * x2smx1s * x2smx1scos * x2smx1sabssincos * x2smx1sabssinsin))
                / (denom_a * x1smx2sabs)
            + (n0_032 * x2s * x2smx1s * x2smx1scos * x2smx1sabssincos * x2smx1sabssinsin)
                / (denom_b * x1smx2sabs)
            + (-n0_004 * (x2smx1sabssincos2 - n0_5)) / denom_b
            + (n0_006 * n0_004 * x2s * (x2smx1sabssincos2 - n0_5)) / denom_c;

        let offdiag = (n8 * x1 * x2 * x1smx2s * x2smx1scos2 * x2smx1sabssinsin2)
            / (x2smx1s * denom_a)
            + (n8 * x1 * x2 * x1smx2s * x2smx1ssin * x2smx1sabssincos * x2smx1sabssinsin)
                / (x1smx2sabs * denom_a)
            + (n8 * x1 * x2 * x1smx2s * x2smx1scos * x2smx1sabssincos * x2smx1sabssinsin)
                / (x2smx1s * denom_a * x1smx2sabs)
            + (n8 * x1 * x2 * x2smx1scos * x2smx1sabssincos * x2smx1sabssinsin)
                / (denom_a * x1smx2sabs)
            + (n0_016 * x1 * x2 * x2smx1s * x2smx1scos * x2smx1sabssincos * x2smx1sabssinsin)
                / (denom_b * x1smx2sabs)
            + (n0_016 * x1 * x2 * x1smx2s * x2smx1scos * x2smx1sabssincos * x2smx1sabssinsin)
                / (denom_b * x1smx2sabs)
            + (-n8 * x1 * x2 * x1smx2s * x2smx1scos2 * x2smx1sabssincos2) / (denom_a * x2smx1s)
            + (n0_006 * n0_004 * x1 * x2 * (x2smx1sabssincos2 - n0_5)) / denom_c;

        [[a, offdiag], [offdiag, b]]
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use finitediff::FiniteDiff;
    use proptest::prelude::*;
    use std::{f32, f64};

    #[test]
    fn test_schaffer_n2_optimum() {
        assert_relative_eq!(schaffer_n2(&[0_f32, 0_f32]), 0.0, epsilon = f32::EPSILON);
        assert_relative_eq!(schaffer_n2(&[0_f64, 0_f64]), 0.0, epsilon = f64::EPSILON);

        let deriv = schaffer_n2_derivative(&[0.0, 0.0]);
        for i in 0..2 {
            assert_relative_eq!(deriv[i], 0.0, epsilon = f64::EPSILON);
        }
    }

    proptest! {
        #[test]
        fn test_schaffer_n2_derivative_finitediff(a in -10.0..10.0, b in -10.0..10.0) {
            // Note: prop testing range is smaller than range of function, simply because finitediff
            // has huge errors far away from the optimum.
            let param = [a, b];
            let derivative = schaffer_n2_derivative(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| schaffer_n2(&[x[0], x[1]]));
            // println!("1: {derivative:?} at {a}/{b}");
            // println!("2: {derivative_fd:?} at {a}/{b}");
            for i in 0..derivative.len() {
                assert_relative_eq!(
                    derivative[i],
                    derivative_fd[i],
                    epsilon = 1e-3,
                    max_relative = 1e-2
                );
            }
        }
    }

    proptest! {
        #[test]
        fn test_schaffer_n2_hessian_finitediff(a in -10.0..10.0, b in -10.0..10.0) {
            // Note: prop testing range is smaller than range of function, simply because finitediff
            // has huge errors far away from the optimum.
            let param = [a, b];
            let hessian = schaffer_n2_hessian(&param);
            let hessian_fd =
                Vec::from(param).forward_hessian(&|x| schaffer_n2_derivative(&[x[0], x[1]]).to_vec());
            let n = hessian.len();
            // println!("1: {hessian:?} at {a}/{b}");
            // println!("2: {hessian_fd:?} at {a}/{b}");
            for i in 0..n {
                assert_eq!(hessian[i].len(), n);
                for j in 0..n {
                    assert_relative_eq!(
                        hessian[i][j],
                        hessian_fd[i][j],
                        epsilon = 1e-3,
                        max_relative = 1e-2
                    );
                }
            }
        }
    }

    #[test]
    fn test_schaffer_n4_optimum() {
        assert_relative_eq!(
            schaffer_n4(&[0_f32, 1.25313_f32]),
            0.29257864,
            epsilon = f32::EPSILON
        );

        let deriv = schaffer_n4_derivative(&[0.0, 1.25313]);
        for i in 0..2 {
            assert_relative_eq!(deriv[i], 0.0, epsilon = 1e-4);
        }
    }

    proptest! {
        #[test]
        fn test_schaffer_n4_derivative_finitediff(a in -100.0..100.0, b in -100.0..100.0) {
            let param = [a, b];
            let derivative = schaffer_n4_derivative(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| schaffer_n4(&[x[0], x[1]]));
            // println!("1: {derivative:?} at {a}/{b}");
            // println!("2: {derivative_fd:?} at {a}/{b}");
            for i in 0..derivative.len() {
                assert_relative_eq!(
                    derivative[i],
                    derivative_fd[i],
                    epsilon = 1e-3,
                    max_relative = 1e-2,
                );
            }
        }
    }

    proptest! {
        #[test]
        fn test_schaffer_n4_hessian_finitediff(a in -10.0..10.0, b in -10.0..10.0) {
            // Note: prop testing range is smaller than range of function, simply because finitediff
            // has huge errors far away from the optimum.
            let param = [a, b];
            let hessian = schaffer_n4_hessian(&param);
            let hessian_fd =
                Vec::from(param).forward_hessian(&|x| schaffer_n4_derivative(&[x[0], x[1]]).to_vec());
            let n = hessian.len();
            // println!("1: {hessian:?} at {a}/{b}");
            // println!("2: {hessian_fd:?} at {a}/{b}");
            for i in 0..n {
                assert_eq!(hessian[i].len(), n);
                for j in 0..n {
                    if hessian_fd[i][j].is_finite() {
                        assert_relative_eq!(
                            hessian[i][j],
                            hessian_fd[i][j],
                            epsilon = 1e-3,
                            max_relative = 1e-2
                        );
                    }
                }
            }
        }
    }
}