argmin_testfunctions/
styblinskitang.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # Styblinski-Tang test function
//!
//! Defined as
//!
//! `f(x_1, x_2, ..., x_n) = 1/2 * \sum_{i=1}^{n} \left[ x_i^4 - 16 * x_i^2 + 5 * x_i \right]`
//!
//! where `x_i \in [-5, 5]`.
//!
//! The global minimum is at `f(x_1, x_2, ..., x_n) = f(-2.903534, -2.903534, ..., -2.903534) =
//! -39.16616*n`.

use num::{Float, FromPrimitive};
use std::iter::Sum;

/// Styblinski-Tang test function
///
/// Defined as
///
/// `f(x_1, x_2, ..., x_n) = 1/2 * \sum_{i=1}^{n} \left[ x_i^4 - 16 * x_i^2 + 5 * x_i \right]`
///
/// where `x_i \in [-5, 5]`.
///
/// The global minimum is at `f(x_1, x_2, ..., x_n) = f(-2.903534, -2.903534, ..., -2.903534) =
/// -39.16616*n`.
pub fn styblinski_tang<T>(param: &[T]) -> T
where
    T: Float + FromPrimitive + Sum,
{
    T::from_f64(0.5).unwrap()
        * param
            .iter()
            .map(|x| {
                x.powi(4) - T::from_f64(16.0).unwrap() * x.powi(2) + T::from_f64(5.0).unwrap() * *x
            })
            .sum()
}

/// Derivative of Styblinski-Tang test function
pub fn styblinski_tang_derivative<T>(param: &[T]) -> Vec<T>
where
    T: Float + FromPrimitive + Sum,
{
    let n2 = T::from_f64(2.0).unwrap();
    let n2_5 = T::from_f64(2.5).unwrap();
    let n16 = T::from_f64(16.0).unwrap();

    param
        .iter()
        .map(|x| n2 * x.powi(3) - n16 * *x + n2_5)
        .collect()
}

/// Derivative of Styblinski-Tang test function
///
/// This is the const generics version, which requires the number of parameters to be known
/// at compile time.
pub fn styblinski_tang_derivative_const<const N: usize, T>(param: &[T; N]) -> [T; N]
where
    T: Float + FromPrimitive + Sum,
{
    let n0 = T::from_f64(0.0).unwrap();
    let n2 = T::from_f64(2.0).unwrap();
    let n2_5 = T::from_f64(2.5).unwrap();
    let n16 = T::from_f64(16.0).unwrap();

    let mut out = [n0; N];

    param
        .iter()
        .zip(out.iter_mut())
        .map(|(x, o)| *o = n2 * x.powi(3) - n16 * *x + n2_5)
        .count();

    out
}

/// Hessian of Styblinski-Tang test function
pub fn styblinski_tang_hessian<T>(param: &[T]) -> Vec<Vec<T>>
where
    T: Float + FromPrimitive + Sum,
{
    let n0 = T::from_f64(0.0).unwrap();
    let n6 = T::from_f64(6.0).unwrap();
    let n16 = T::from_f64(16.0).unwrap();

    let n = param.len();
    let mut out = vec![vec![n0; n]; n];

    param
        .iter()
        .enumerate()
        .map(|(i, x)| out[i][i] = n6 * x.powi(2) - n16)
        .count();

    out
}

/// Hessian of Styblinski-Tang test function
///
/// This is the const generics version, which requires the number of parameters to be known
/// at compile time.
pub fn styblinski_tang_hessian_const<const N: usize, T>(param: &[T; N]) -> [[T; N]; N]
where
    T: Float + FromPrimitive + Sum,
{
    let n0 = T::from_f64(0.0).unwrap();
    let n6 = T::from_f64(6.0).unwrap();
    let n16 = T::from_f64(16.0).unwrap();

    let mut out = [[n0; N]; N];

    param
        .iter()
        .enumerate()
        .map(|(i, x)| out[i][i] = n6 * x.powi(2) - n16)
        .count();

    out
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use finitediff::FiniteDiff;
    use proptest::prelude::*;
    use std::f32;

    #[test]
    fn test_styblinski_tang_optimum() {
        assert_relative_eq!(
            styblinski_tang(&[-2.903534_f32, -2.903534_f32, -2.903534_f32]),
            -117.49849,
            epsilon = f32::EPSILON
        );
        assert_relative_eq!(
            styblinski_tang(&[-2.903534_f64, -2.903534_f64, -2.903534_f64]),
            -117.4984971113142,
            epsilon = f64::EPSILON
        );

        let deriv = styblinski_tang_derivative(&[-2.903534_f64, -2.903534_f64, -2.903534_f64]);
        for i in 0..3 {
            assert_relative_eq!(deriv[i], 0.0, epsilon = 1e-5, max_relative = 1e-2);
        }
    }

    proptest! {
        #[test]
        fn test_styblinski_tang_derivative_finitediff(a in -5.0..5.0,
                                                      b in -5.0..5.0,
                                                      c in -5.0..5.0,
                                                      d in -5.0..5.0,
                                                      e in -5.0..5.0,
                                                      f in -5.0..5.0,
                                                      g in -5.0..5.0,
                                                      h in -5.0..5.0) {
            let param = [a, b, c, d, e, f, g, h];
            let derivative = styblinski_tang_derivative(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| styblinski_tang(&x));
            for i in 0..derivative.len() {
                assert_relative_eq!(
                    derivative[i],
                    derivative_fd[i],
                    epsilon = 1e-5,
                    max_relative = 1e-2
                );
            }
        }
    }

    proptest! {
        #[test]
        fn test_styblinski_tang_derivative_const_finitediff(a in -5.0..5.0,
                                                            b in -5.0..5.0,
                                                            c in -5.0..5.0,
                                                            d in -5.0..5.0,
                                                            e in -5.0..5.0,
                                                            f in -5.0..5.0,
                                                            g in -5.0..5.0,
                                                            h in -5.0..5.0) {
            let param = [a, b, c, d, e, f, g, h];
            let derivative = styblinski_tang_derivative_const(&param);
            let derivative_fd = Vec::from(param).central_diff(&|x| styblinski_tang(&x));
            for i in 0..derivative.len() {
                assert_relative_eq!(
                    derivative[i],
                    derivative_fd[i],
                    epsilon = 1e-5,
                    max_relative = 1e-2
                );
            }
        }
    }

    proptest! {
        #[test]
        fn test_styblinski_tang_hessian_finitediff(a in -5.0..5.0,
                                                   b in -5.0..5.0,
                                                   c in -5.0..5.0,
                                                   d in -5.0..5.0,
                                                   e in -5.0..5.0,
                                                   f in -5.0..5.0,
                                                   g in -5.0..5.0,
                                                   h in -5.0..5.0) {
            let param = [a, b, c, d, e, f, g, h];
            let derivative = styblinski_tang_hessian(&param);
            let derivative_fd = Vec::from(param).central_hessian(&|x| styblinski_tang_derivative(&x));
            for i in 0..derivative.len() {
                for j in 0..derivative[i].len() {
                    assert_relative_eq!(
                        derivative[i][j],
                        derivative_fd[i][j],
                        epsilon = 1e-5,
                        max_relative = 1e-2
                    );
                }
            }
        }
    }

    proptest! {
        #[test]
        fn test_styblinski_tang_hessian_const_finitediff(a in -5.0..5.0,
                                                         b in -5.0..5.0,
                                                         c in -5.0..5.0,
                                                         d in -5.0..5.0,
                                                         e in -5.0..5.0,
                                                         f in -5.0..5.0,
                                                         g in -5.0..5.0,
                                                         h in -5.0..5.0) {
            let param = [a, b, c, d, e, f, g, h];
            let derivative = styblinski_tang_hessian_const(&param);
            let derivative_fd = Vec::from(param).central_hessian(&|x| styblinski_tang_derivative(&x));
            for i in 0..derivative.len() {
                for j in 0..derivative[i].len() {
                    assert_relative_eq!(
                        derivative[i][j],
                        derivative_fd[i][j],
                        epsilon = 1e-5,
                        max_relative = 1e-2
                    );
                }
            }
        }
    }
}