argmin_testfunctions/zero.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// Copyright 2018-2024 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! # Zero
//!
//! Always returns `0.0`. This is only for performance tests.
use num::{Float, FromPrimitive};
/// Zero test function
///
/// Always returns `0.0`. This is only for performance tests.
pub fn zero<T>(_param: &[T]) -> T
where
T: Float + FromPrimitive,
{
T::from_f64(0.0).unwrap()
}
/// Derivative of zero test function
///
/// Always returns a vector with the length of param, full of `0.0`. This is only for performance
/// tests.
pub fn zero_derivative<T>(param: &[T]) -> Vec<T>
where
T: Float + FromPrimitive,
{
vec![T::from_f64(0.0).unwrap(); param.len()]
}
/// Derivative of zero test function (const version)
///
/// Always returns an array with the length of param, full of `0.0`. This is only for performance
/// tests.
pub fn zero_derivative_const<const N: usize, T>(_param: &[T; N]) -> [T; N]
where
T: Float + FromPrimitive,
{
[T::from_f64(0.0).unwrap(); N]
}
/// Hessian of zero test function
///
/// Always returns a matrix with size NxN, full of `0.0`. This is only for performance tests.
pub fn zero_hessian<T>(param: &[T]) -> Vec<Vec<T>>
where
T: Float + FromPrimitive,
{
vec![vec![T::from_f64(0.0).unwrap(); param.len()]; param.len()]
}
/// Hessian of zero test function (const version)
///
/// Always returns a matrix with size NxN, full of `0.0`. This is only for performance tests.
pub fn zero_hessian_const<const N: usize, T>(_param: &[T; N]) -> [[T; N]; N]
where
T: Float + FromPrimitive,
{
[[T::from_f64(0.0).unwrap(); N]; N]
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_zero() {
assert_eq!(
zero(&[0.0_f64, 0.0_f64]).to_ne_bytes(),
0.0_f64.to_ne_bytes()
);
assert_eq!(
zero(&[0.0_f32, 0.0_f32]).to_ne_bytes(),
0.0_f32.to_ne_bytes()
);
}
#[test]
fn test_zero_derivative() {
zero_derivative(&[0.0_f64, 0.0, 23.0, 28.0])
.iter()
.map(|x| assert_eq!(x.to_ne_bytes(), 0.0_f64.to_ne_bytes()))
.count();
zero_derivative(&[0.0_f32, 0.0, 23.0, 28.0])
.iter()
.map(|x| assert_eq!(x.to_ne_bytes(), 0.0_f32.to_ne_bytes()))
.count();
zero_derivative_const(&[0.0_f64, 0.0, 23.0, 28.0])
.iter()
.map(|x| assert_eq!(x.to_ne_bytes(), 0.0_f64.to_ne_bytes()))
.count();
zero_derivative_const(&[0.0_f32, 0.0, 23.0, 28.0])
.iter()
.map(|x| assert_eq!(x.to_ne_bytes(), 0.0_f32.to_ne_bytes()))
.count();
}
#[test]
fn test_zero_hessian() {
zero_hessian(&[0.0_f64, 0.0, 23.0, 28.0])
.iter()
.flatten()
.map(|x| assert_eq!(x.to_ne_bytes(), 0.0_f64.to_ne_bytes()))
.count();
zero_hessian(&[0.0_f32, 0.0, 23.0, 28.0])
.iter()
.flatten()
.map(|x| assert_eq!(x.to_ne_bytes(), 0.0_f32.to_ne_bytes()))
.count();
zero_hessian_const(&[0.0_f64, 0.0, 23.0, 28.0])
.iter()
.flatten()
.map(|x| assert_eq!(x.to_ne_bytes(), 0.0_f64.to_ne_bytes()))
.count();
zero_hessian_const(&[0.0_f32, 0.0, 23.0, 28.0])
.iter()
.flatten()
.map(|x| assert_eq!(x.to_ne_bytes(), 0.0_f32.to_ne_bytes()))
.count();
}
}