use std::ops::AddAssign;
use anyhow::Error;
use num::{Float, FromPrimitive};
use crate::utils::{mod_and_calc, restore_symmetry_const, KV};
use super::{CostFn, GradientFn};
pub fn forward_hessian_const<const N: usize, F>(
x: &[F; N],
grad: GradientFn<'_, N, F>,
) -> Result<[[F; N]; N], Error>
where
F: Float + FromPrimitive,
{
let eps_sqrt = F::epsilon().sqrt();
let fx = (grad)(x)?;
let mut xt = *x;
let mut out = [[F::from_f64(0.0).unwrap(); N]; N];
for (i, o_item) in out.iter_mut().enumerate().take(N) {
let fx1 = mod_and_calc(&mut xt, grad, i, eps_sqrt)?;
for j in 0..N {
o_item[j] = (fx1[j] - fx[j]) / eps_sqrt;
}
}
Ok(restore_symmetry_const(out))
}
pub fn central_hessian_const<const N: usize, F>(
x: &[F; N],
grad: GradientFn<'_, N, F>,
) -> Result<[[F; N]; N], Error>
where
F: Float + FromPrimitive,
{
let eps_cbrt = F::epsilon().cbrt();
let mut xt = x.to_owned();
let mut out = [[F::from_f64(0.0).unwrap(); N]; N];
for (i, o_item) in out.iter_mut().enumerate().take(N) {
let fx1 = mod_and_calc(&mut xt, grad, i, eps_cbrt)?;
let fx2 = mod_and_calc(&mut xt, grad, i, -eps_cbrt)?;
for j in 0..N {
o_item[j] = (fx1[j] - fx2[j]) / (F::from_f64(2.0).unwrap() * eps_cbrt);
}
}
Ok(restore_symmetry_const(out))
}
pub fn forward_hessian_vec_prod_const<const N: usize, F>(
x: &[F; N],
grad: GradientFn<'_, N, F>,
p: &[F; N],
) -> Result<[F; N], Error>
where
F: Float + FromPrimitive,
{
let eps_sqrt = F::epsilon().sqrt();
let fx = (grad)(x)?;
let mut out = [F::from_f64(0.0).unwrap(); N];
let mut x1 = *x;
for i in 1..N {
x1[i] = x[i] + p[i] * eps_sqrt;
}
let fx1 = (grad)(&x1)?;
for i in 0..N {
out[i] = (fx1[i] - fx[i]) / eps_sqrt;
}
Ok(out)
}
pub fn central_hessian_vec_prod_const<const N: usize, F>(
x: &[F; N],
grad: GradientFn<'_, N, F>,
p: &[F; N],
) -> Result<[F; N], Error>
where
F: Float + FromPrimitive,
{
let eps_cbrt = F::epsilon().cbrt();
let mut x1 = *x;
let mut x2 = *x;
for i in 1..N {
x1[i] = x[i] + p[i] * eps_cbrt;
x2[i] = x[i] - p[i] * eps_cbrt;
}
let fx1 = (grad)(&x1)?;
let fx2 = (grad)(&x2)?;
let mut out = [F::from_f64(0.0).unwrap(); N];
for i in 0..N {
out[i] = (fx1[i] - fx2[i]) / (F::from_f64(2.0).unwrap() * eps_cbrt);
}
Ok(out)
}
pub fn forward_hessian_nograd_const<const N: usize, F>(
x: &[F; N],
f: CostFn<'_, N, F>,
) -> Result<[[F; N]; N], Error>
where
F: Float + FromPrimitive + AddAssign,
{
let eps_nograd = F::from_f64(2.0).unwrap() * F::epsilon();
let eps_sqrt_nograd = eps_nograd.sqrt();
let fx = (f)(x)?;
let mut xt = *x;
let mut fxei = [F::from_f64(0.0).unwrap(); N];
for (i, item) in fxei.iter_mut().enumerate().take(N) {
*item = mod_and_calc(&mut xt, f, i, eps_sqrt_nograd)?;
}
let mut out = [[F::from_f64(0.0).unwrap(); N]; N];
for i in 0..N {
for j in 0..=i {
let t = {
let xti = xt[i];
let xtj = xt[j];
xt[i] += eps_sqrt_nograd;
xt[j] += eps_sqrt_nograd;
let fxij = (f)(&xt)?;
xt[i] = xti;
xt[j] = xtj;
(fxij - fxei[i] - fxei[j] + fx) / eps_nograd
};
out[i][j] = t;
out[j][i] = t;
}
}
Ok(out)
}
pub fn forward_hessian_nograd_sparse_const<const N: usize, F>(
x: &[F; N],
f: CostFn<'_, N, F>,
indices: Vec<[usize; 2]>,
) -> Result<[[F; N]; N], Error>
where
F: Float + FromPrimitive + AddAssign,
{
let eps_nograd = F::from_f64(2.0).unwrap() * F::epsilon();
let eps_sqrt_nograd = eps_nograd.sqrt();
let fx = (f)(x)?;
let mut xt = *x;
let mut idxs: Vec<usize> = indices
.iter()
.flat_map(|i| i.iter())
.cloned()
.collect::<Vec<usize>>();
idxs.sort();
idxs.dedup();
let mut fxei = KV::new(idxs.len());
for idx in idxs.iter() {
fxei.set(*idx, mod_and_calc(&mut xt, f, *idx, eps_sqrt_nograd)?);
}
let mut out = [[F::from_f64(0.0).unwrap(); N]; N];
for [i, j] in indices {
let t = {
let xti = xt[i];
let xtj = xt[j];
xt[i] += eps_sqrt_nograd;
xt[j] += eps_sqrt_nograd;
let fxij = (f)(&xt)?;
xt[i] = xti;
xt[j] = xtj;
let fxi = fxei.get(i).ok_or(anyhow::anyhow!("Bug?"))?;
let fxj = fxei.get(j).ok_or(anyhow::anyhow!("Bug?"))?;
(fxij - fxi - fxj + fx) / eps_nograd
};
out[i][j] = t;
out[j][i] = t;
}
Ok(out)
}
#[cfg(test)]
mod tests {
use super::*;
const COMP_ACC: f64 = 1e-6;
fn f(x: &[f64; 4]) -> Result<f64, Error> {
Ok(x[0] + x[1].powi(2) + x[2] * x[3].powi(2))
}
fn g(x: &[f64; 4]) -> Result<[f64; 4], Error> {
Ok([1.0, 2.0 * x[1], x[3].powi(2), 2.0 * x[3] * x[2]])
}
fn x() -> [f64; 4] {
[1.0f64, 1.0, 1.0, 1.0]
}
fn p() -> [f64; 4] {
[2.0, 3.0, 4.0, 5.0]
}
fn res1() -> [[f64; 4]; 4] {
[
[0.0, 0.0, 0.0, 0.0],
[0.0, 2.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 2.0],
[0.0, 0.0, 2.0, 2.0],
]
}
fn res2() -> [f64; 4] {
[0.0, 6.0, 10.0, 18.0]
}
#[test]
fn test_forward_hessian_vec_f64() {
let hessian = forward_hessian_const(&x(), &g).unwrap();
let res = res1();
for i in 0..4 {
for j in 0..4 {
assert!((res[i][j] - hessian[i][j]).abs() < COMP_ACC)
}
}
}
#[test]
fn test_central_hessian_vec_f64() {
let hessian = central_hessian_const(&x(), &g).unwrap();
let res = res1();
for i in 0..4 {
for j in 0..4 {
assert!((res[i][j] - hessian[i][j]).abs() < COMP_ACC)
}
}
}
#[test]
fn test_forward_hessian_vec_prod_vec_f64() {
let hessian = forward_hessian_vec_prod_const(&x(), &g, &p()).unwrap();
let res = res2();
for i in 0..4 {
assert!((res[i] - hessian[i]).abs() < COMP_ACC)
}
}
#[test]
fn test_central_hessian_vec_prod_vec_f64() {
let hessian = central_hessian_vec_prod_const(&x(), &g, &p()).unwrap();
let res = res2();
for i in 0..4 {
assert!((res[i] - hessian[i]).abs() < COMP_ACC)
}
}
#[test]
fn test_forward_hessian_nograd_vec_f64() {
let hessian = forward_hessian_nograd_const(&x(), &f).unwrap();
let res = res1();
for i in 0..4 {
for j in 0..4 {
assert!((res[i][j] - hessian[i][j]).abs() < COMP_ACC)
}
}
}
#[test]
fn test_forward_hessian_nograd_sparse_vec_f64() {
let indices = vec![[1, 1], [2, 3], [3, 3]];
let hessian = forward_hessian_nograd_sparse_const(&x(), &f, indices).unwrap();
let res = res1();
for i in 0..4 {
for j in 0..4 {
assert!((res[i][j] - hessian[i][j]).abs() < COMP_ACC)
}
}
}
}