pub struct BrentOpt<F> { /* private fields */ }
Expand description
§Brent’s method
A minimization algorithm combining parabolic interpolation and the golden-section method. It has the reliability of the golden-section method, but can be faster thanks to the parabolic interpolation steps.
§Requirements on the optimization problem
The optimization problem is required to implement CostFunction
.
§Reference
“An algorithm with guaranteed convergence for finding a minimum of a function of one variable”, Algorithms for minimization without derivatives, Richard P. Brent, 1973, Prentice-Hall.
Implementations§
source§impl<F: ArgminFloat> BrentOpt<F>
impl<F: ArgminFloat> BrentOpt<F>
sourcepub fn new(min: F, max: F) -> Self
pub fn new(min: F, max: F) -> Self
Constructor
The values min
and max
must bracket the minimum of the function.
sourcepub fn set_tolerance(self, eps: F, t: F) -> Self
pub fn set_tolerance(self, eps: F, t: F) -> Self
Set the tolerance to the value required.
The algorithm will return an approximation x
of a local
minimum of the function, with an accuracy smaller than 3 tol
,
where tol = eps*abs(x) + t
.
It is useless to set eps
to less than the square root of the
machine precision (F::epsilon().sqrt()
), which is its default
value. The default value of t
is 1e-5
.
Trait Implementations§
source§impl<'de, F> Deserialize<'de> for BrentOpt<F>where
F: Deserialize<'de>,
impl<'de, F> Deserialize<'de> for BrentOpt<F>where
F: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
source§impl<O, F> Solver<O, IterState<F, (), (), (), (), F>> for BrentOpt<F>where
O: CostFunction<Param = F, Output = F>,
F: ArgminFloat,
impl<O, F> Solver<O, IterState<F, (), (), (), (), F>> for BrentOpt<F>where
O: CostFunction<Param = F, Output = F>,
F: ArgminFloat,
source§fn init(
&mut self,
problem: &mut Problem<O>,
state: IterState<F, (), (), (), (), F>,
) -> Result<(IterState<F, (), (), (), (), F>, Option<KV>), Error>
fn init( &mut self, problem: &mut Problem<O>, state: IterState<F, (), (), (), (), F>, ) -> Result<(IterState<F, (), (), (), (), F>, Option<KV>), Error>
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<F, (), (), (), (), F>,
) -> Result<(IterState<F, (), (), (), (), F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<F, (), (), (), (), F>, ) -> Result<(IterState<F, (), (), (), (), F>, Option<KV>), Error>
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
source§fn terminate(&mut self, _state: &I) -> TerminationStatus
fn terminate(&mut self, _state: &I) -> TerminationStatus
terminate_internal
. Read moreAuto Trait Implementations§
impl<F> Freeze for BrentOpt<F>where
F: Freeze,
impl<F> RefUnwindSafe for BrentOpt<F>where
F: RefUnwindSafe,
impl<F> Send for BrentOpt<F>where
F: Send,
impl<F> Sync for BrentOpt<F>where
F: Sync,
impl<F> Unpin for BrentOpt<F>where
F: Unpin,
impl<F> UnwindSafe for BrentOpt<F>where
F: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.