pub struct NonlinearConjugateGradient<P, L, B, F> { /* private fields */ }
Expand description
§Non-linear Conjugate Gradient method
A generalization of the conjugate gradient method for nonlinear optimization problems.
Requires an initial parameter vector.
§Requirements on the optimization problem
The optimization problem is required to implement CostFunction
and Gradient
.
§Reference
Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.
Implementations§
source§impl<P, L, B, F> NonlinearConjugateGradient<P, L, B, F>where
F: ArgminFloat,
impl<P, L, B, F> NonlinearConjugateGradient<P, L, B, F>where
F: ArgminFloat,
sourcepub fn new(linesearch: L, beta_method: B) -> Self
pub fn new(linesearch: L, beta_method: B) -> Self
Construct a new instance of NonlinearConjugateGradient
.
Takes a LineSearch
and a NLCGBetaUpdate
as input.
§Example
let nlcg: NonlinearConjugateGradient<Vec<f64>, _, _, f64> =
NonlinearConjugateGradient::new(linesearch, beta_method);
sourcepub fn restart_iters(self, iters: u64) -> Self
pub fn restart_iters(self, iters: u64) -> Self
Specify the number of iterations after which a restart should be performed.
This allows the algorithm to “forget” previous information which may not be helpful anymore.
§Example
let nlcg = nlcg.restart_iters(100);
sourcepub fn restart_orthogonality(self, v: F) -> Self
pub fn restart_orthogonality(self, v: F) -> Self
Set the value for the orthogonality measure.
Setting this parameter leads to a restart of the algorithm (setting beta = 0) after consecutive search directions stop being orthogonal. In other words, if this condition is met:
|\nabla f_k^T * \nabla f_{k-1}| / | \nabla f_k |^2 >= v
A typical value for v
is 0.1.
§Example
let nlcg = nlcg.restart_orthogonality(0.1);
Trait Implementations§
source§impl<P: Clone, L: Clone, B: Clone, F: Clone> Clone for NonlinearConjugateGradient<P, L, B, F>
impl<P: Clone, L: Clone, B: Clone, F: Clone> Clone for NonlinearConjugateGradient<P, L, B, F>
source§fn clone(&self) -> NonlinearConjugateGradient<P, L, B, F>
fn clone(&self) -> NonlinearConjugateGradient<P, L, B, F>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl<'de, P, L, B, F> Deserialize<'de> for NonlinearConjugateGradient<P, L, B, F>
impl<'de, P, L, B, F> Deserialize<'de> for NonlinearConjugateGradient<P, L, B, F>
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
source§impl<P, L, B, F> Serialize for NonlinearConjugateGradient<P, L, B, F>
impl<P, L, B, F> Serialize for NonlinearConjugateGradient<P, L, B, F>
source§impl<O, P, G, L, B, F> Solver<O, IterState<P, G, (), (), (), F>> for NonlinearConjugateGradient<P, L, B, F>where
O: CostFunction<Param = P, Output = F> + Gradient<Param = P, Gradient = G>,
P: Clone + ArgminAdd<P, P> + ArgminMul<F, P>,
G: Clone + ArgminMul<F, P> + ArgminDot<G, F> + ArgminL2Norm<F>,
L: Clone + LineSearch<P, F> + Solver<O, IterState<P, G, (), (), (), F>>,
B: NLCGBetaUpdate<G, P, F>,
F: ArgminFloat,
impl<O, P, G, L, B, F> Solver<O, IterState<P, G, (), (), (), F>> for NonlinearConjugateGradient<P, L, B, F>where
O: CostFunction<Param = P, Output = F> + Gradient<Param = P, Gradient = G>,
P: Clone + ArgminAdd<P, P> + ArgminMul<F, P>,
G: Clone + ArgminMul<F, P> + ArgminDot<G, F> + ArgminL2Norm<F>,
L: Clone + LineSearch<P, F> + Solver<O, IterState<P, G, (), (), (), F>>,
B: NLCGBetaUpdate<G, P, F>,
F: ArgminFloat,
source§fn init(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), (), (), F>,
) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
fn init( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), (), (), F>, ) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), (), (), F>,
) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), (), (), F>, ) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
source§fn terminate(&mut self, _state: &I) -> TerminationStatus
fn terminate(&mut self, _state: &I) -> TerminationStatus
terminate_internal
. Read moreAuto Trait Implementations§
impl<P, L, B, F> Freeze for NonlinearConjugateGradient<P, L, B, F>
impl<P, L, B, F> RefUnwindSafe for NonlinearConjugateGradient<P, L, B, F>
impl<P, L, B, F> Send for NonlinearConjugateGradient<P, L, B, F>
impl<P, L, B, F> Sync for NonlinearConjugateGradient<P, L, B, F>
impl<P, L, B, F> Unpin for NonlinearConjugateGradient<P, L, B, F>
impl<P, L, B, F> UnwindSafe for NonlinearConjugateGradient<P, L, B, F>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.