pub struct Landweber<F> { /* private fields */ }
Expand description
§Landweber iteration
The Landweber iteration is a solver for ill-posed linear inverse problems.
In iteration k
, the new parameter vector x_{k+1}
is calculated from the previous parameter
vector x_k
and the gradient at x_k
according to the following update rule:
x_{k+1} = x_k - omega * \nabla f(x_k)
§Requirements on the optimization problem
The optimization problem is required to implement Gradient
.
§References
Landweber, L. (1951): An iteration formula for Fredholm integral equations of the first kind. Amer. J. Math. 73, 615–624
Implementations§
Trait Implementations§
source§impl<'de, F> Deserialize<'de> for Landweber<F>where
F: Deserialize<'de>,
impl<'de, F> Deserialize<'de> for Landweber<F>where
F: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<O, F, P, G> Solver<O, IterState<P, G, (), (), (), F>> for Landweber<F>
impl<O, F, P, G> Solver<O, IterState<P, G, (), (), (), F>> for Landweber<F>
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), (), (), F>,
) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), (), (), F>, ) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
Computes a single iteration of the algorithm and has access to the optimization problem
definition and the internal state of the solver.
Returns an updated
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn init(
&mut self,
_problem: &mut Problem<O>,
state: I,
) -> Result<(I, Option<KV>), Error>
fn init( &mut self, _problem: &mut Problem<O>, state: I, ) -> Result<(I, Option<KV>), Error>
Initializes the algorithm. Read more
source§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
Checks whether basic termination reasons apply. Read more
source§fn terminate(&mut self, _state: &I) -> TerminationStatus
fn terminate(&mut self, _state: &I) -> TerminationStatus
Used to implement stopping criteria, in particular criteria which are not covered by
(
terminate_internal
. Read moreimpl<F: Copy> Copy for Landweber<F>
Auto Trait Implementations§
impl<F> Freeze for Landweber<F>where
F: Freeze,
impl<F> RefUnwindSafe for Landweber<F>where
F: RefUnwindSafe,
impl<F> Send for Landweber<F>where
F: Send,
impl<F> Sync for Landweber<F>where
F: Sync,
impl<F> Unpin for Landweber<F>where
F: Unpin,
impl<F> UnwindSafe for Landweber<F>where
F: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.