Struct argmin::solver::linesearch::BacktrackingLineSearch
source · pub struct BacktrackingLineSearch<P, G, L, F> { /* private fields */ }
Expand description
§Backtracking line search
The Backtracking line search is a method which finds a step length from a given point along a given direction, such that this step length obeys the Armijo (sufficient decrease) condition.
§Requirements on the optimization problem
The optimization problem is required to implement CostFunction
and Gradient
.
§References
Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.
Wikipedia: https://en.wikipedia.org/wiki/Backtracking_line_search
Implementations§
source§impl<P, G, L, F> BacktrackingLineSearch<P, G, L, F>where
F: ArgminFloat,
impl<P, G, L, F> BacktrackingLineSearch<P, G, L, F>where
F: ArgminFloat,
Trait Implementations§
source§impl<P: Clone, G: Clone, L: Clone, F: Clone> Clone for BacktrackingLineSearch<P, G, L, F>
impl<P: Clone, G: Clone, L: Clone, F: Clone> Clone for BacktrackingLineSearch<P, G, L, F>
source§fn clone(&self) -> BacktrackingLineSearch<P, G, L, F>
fn clone(&self) -> BacktrackingLineSearch<P, G, L, F>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<'de, P, G, L, F> Deserialize<'de> for BacktrackingLineSearch<P, G, L, F>
impl<'de, P, G, L, F> Deserialize<'de> for BacktrackingLineSearch<P, G, L, F>
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<P, G, L, F> LineSearch<G, F> for BacktrackingLineSearch<P, G, L, F>where
F: ArgminFloat,
impl<P, G, L, F> LineSearch<G, F> for BacktrackingLineSearch<P, G, L, F>where
F: ArgminFloat,
source§fn search_direction(&mut self, search_direction: G)
fn search_direction(&mut self, search_direction: G)
Set search direction
source§impl<P: PartialEq, G: PartialEq, L: PartialEq, F: PartialEq> PartialEq for BacktrackingLineSearch<P, G, L, F>
impl<P: PartialEq, G: PartialEq, L: PartialEq, F: PartialEq> PartialEq for BacktrackingLineSearch<P, G, L, F>
source§fn eq(&self, other: &BacktrackingLineSearch<P, G, L, F>) -> bool
fn eq(&self, other: &BacktrackingLineSearch<P, G, L, F>) -> bool
This method tests for
self
and other
values to be equal, and is used
by ==
.source§impl<P, G, L, F> Serialize for BacktrackingLineSearch<P, G, L, F>
impl<P, G, L, F> Serialize for BacktrackingLineSearch<P, G, L, F>
source§impl<O, P, G, L, F> Solver<O, IterState<P, G, (), (), (), F>> for BacktrackingLineSearch<P, G, L, F>where
P: Clone + ArgminScaledAdd<G, F, P>,
G: ArgminScaledAdd<G, F, G>,
O: CostFunction<Param = P, Output = F> + Gradient<Param = P, Gradient = G>,
L: LineSearchCondition<G, G, F>,
F: ArgminFloat,
impl<O, P, G, L, F> Solver<O, IterState<P, G, (), (), (), F>> for BacktrackingLineSearch<P, G, L, F>where
P: Clone + ArgminScaledAdd<G, F, P>,
G: ArgminScaledAdd<G, F, G>,
O: CostFunction<Param = P, Output = F> + Gradient<Param = P, Gradient = G>,
L: LineSearchCondition<G, G, F>,
F: ArgminFloat,
source§fn init(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), (), (), F>,
) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
fn init( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), (), (), F>, ) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
Initializes the algorithm. Read more
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), (), (), F>,
) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), (), (), F>, ) -> Result<(IterState<P, G, (), (), (), F>, Option<KV>), Error>
Computes a single iteration of the algorithm and has access to the optimization problem
definition and the internal state of the solver.
Returns an updated
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn terminate(
&mut self,
state: &IterState<P, G, (), (), (), F>,
) -> TerminationStatus
fn terminate( &mut self, state: &IterState<P, G, (), (), (), F>, ) -> TerminationStatus
Used to implement stopping criteria, in particular criteria which are not covered by
(
terminate_internal
. Read moresource§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
Checks whether basic termination reasons apply. Read more
impl<P: Eq, G: Eq, L: Eq, F: Eq> Eq for BacktrackingLineSearch<P, G, L, F>
impl<P, G, L, F> StructuralPartialEq for BacktrackingLineSearch<P, G, L, F>
Auto Trait Implementations§
impl<P, G, L, F> Freeze for BacktrackingLineSearch<P, G, L, F>
impl<P, G, L, F> RefUnwindSafe for BacktrackingLineSearch<P, G, L, F>
impl<P, G, L, F> Send for BacktrackingLineSearch<P, G, L, F>
impl<P, G, L, F> Sync for BacktrackingLineSearch<P, G, L, F>
impl<P, G, L, F> Unpin for BacktrackingLineSearch<P, G, L, F>
impl<P, G, L, F> UnwindSafe for BacktrackingLineSearch<P, G, L, F>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.