Struct argmin::solver::newton::NewtonCG

source ·
pub struct NewtonCG<L, F> { /* private fields */ }
Expand description

§Newton-Conjugate-Gradient (Newton-CG) method

The Newton-CG method (also called truncated Newton method) uses a modified CG to approximately solve the Newton equations. After a search direction is found, a line search is performed.

§Requirements on the optimization problem

The optimization problem is required to implement Gradient and Hessian.

§Reference

Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.

Implementations§

source§

impl<L, F> NewtonCG<L, F>
where F: ArgminFloat,

source

pub fn new(linesearch: L) -> Self

Construct a new instance of NewtonCG

§Example
let ncg: NewtonCG<_, f64> = NewtonCG::new(linesearch);
source

pub fn with_curvature_threshold(self, threshold: F) -> Self

Set curvature threshold

Defaults to 0.

§Example
let ncg: NewtonCG<_, f64> = NewtonCG::new(linesearch).with_curvature_threshold(1e-6);
source

pub fn with_tolerance(self, tol: F) -> Result<Self, Error>

Set tolerance for the stopping criterion based on cost difference

Must be larger than 0 and defaults to EPSILON.

§Example
let ncg: NewtonCG<_, f64> = NewtonCG::new(linesearch).with_tolerance(1e-6)?;

Trait Implementations§

source§

impl<L: Clone, F: Clone> Clone for NewtonCG<L, F>

source§

fn clone(&self) -> NewtonCG<L, F>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<'de, L, F> Deserialize<'de> for NewtonCG<L, F>
where L: Deserialize<'de>, F: Deserialize<'de>,

source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl<L, F> Serialize for NewtonCG<L, F>
where L: Serialize, F: Serialize,

source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl<O, L, P, G, H, F> Solver<O, IterState<P, G, (), H, (), F>> for NewtonCG<L, F>
where O: Gradient<Param = P, Gradient = G> + Hessian<Param = P, Hessian = H>, P: Clone + ArgminSub<P, P> + ArgminDot<P, F> + ArgminScaledAdd<P, F, P> + ArgminMul<F, P> + ArgminConj + ArgminZeroLike, G: ArgminL2Norm<F> + ArgminMul<F, P>, H: Clone + ArgminDot<P, P>, L: Clone + LineSearch<P, F> + Solver<O, IterState<P, G, (), (), (), F>>, F: ArgminFloat + ArgminL2Norm<F>,

source§

fn name(&self) -> &str

Name of the solver. Mainly used in Observers.
source§

fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), H, (), F> ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>

Computes a single iteration of the algorithm and has access to the optimization problem definition and the internal state of the solver. Returns an updated state and optionally a KV which holds key-value pairs used in Observers.
source§

fn terminate( &mut self, state: &IterState<P, G, (), H, (), F> ) -> TerminationStatus

Used to implement stopping criteria, in particular criteria which are not covered by (terminate_internal. Read more
source§

fn init( &mut self, _problem: &mut Problem<O>, state: I ) -> Result<(I, Option<KV>), Error>

Initializes the algorithm. Read more
source§

fn terminate_internal(&mut self, state: &I) -> TerminationStatus

Checks whether basic termination reasons apply. Read more

Auto Trait Implementations§

§

impl<L, F> RefUnwindSafe for NewtonCG<L, F>

§

impl<L, F> Send for NewtonCG<L, F>
where F: Send, L: Send,

§

impl<L, F> Sync for NewtonCG<L, F>
where F: Sync, L: Sync,

§

impl<L, F> Unpin for NewtonCG<L, F>
where F: Unpin, L: Unpin,

§

impl<L, F> UnwindSafe for NewtonCG<L, F>
where F: UnwindSafe, L: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

source§

impl<T> SendAlias for T

source§

impl<T> SyncAlias for T