pub struct NewtonCG<L, F> { /* private fields */ }
Expand description
§Newton-Conjugate-Gradient (Newton-CG) method
The Newton-CG method (also called truncated Newton method) uses a modified CG to approximately solve the Newton equations. After a search direction is found, a line search is performed.
§Requirements on the optimization problem
The optimization problem is required to implement Gradient
and Hessian
.
§Reference
Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.
Implementations§
source§impl<L, F> NewtonCG<L, F>where
F: ArgminFloat,
impl<L, F> NewtonCG<L, F>where
F: ArgminFloat,
sourcepub fn with_curvature_threshold(self, threshold: F) -> Self
pub fn with_curvature_threshold(self, threshold: F) -> Self
Set curvature threshold
Defaults to 0.
§Example
let ncg: NewtonCG<_, f64> = NewtonCG::new(linesearch).with_curvature_threshold(1e-6);
sourcepub fn with_tolerance(self, tol: F) -> Result<Self, Error>
pub fn with_tolerance(self, tol: F) -> Result<Self, Error>
Set tolerance for the stopping criterion based on cost difference
Must be larger than 0 and defaults to EPSILON.
§Example
let ncg: NewtonCG<_, f64> = NewtonCG::new(linesearch).with_tolerance(1e-6)?;
Trait Implementations§
source§impl<'de, L, F> Deserialize<'de> for NewtonCG<L, F>where
L: Deserialize<'de>,
F: Deserialize<'de>,
impl<'de, L, F> Deserialize<'de> for NewtonCG<L, F>where
L: Deserialize<'de>,
F: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<O, L, P, G, H, F> Solver<O, IterState<P, G, (), H, (), F>> for NewtonCG<L, F>where
O: Gradient<Param = P, Gradient = G> + Hessian<Param = P, Hessian = H>,
P: Clone + ArgminSub<P, P> + ArgminDot<P, F> + ArgminScaledAdd<P, F, P> + ArgminMul<F, P> + ArgminConj + ArgminZeroLike,
G: ArgminL2Norm<F> + ArgminMul<F, P>,
H: Clone + ArgminDot<P, P>,
L: Clone + LineSearch<P, F> + Solver<O, IterState<P, G, (), (), (), F>>,
F: ArgminFloat + ArgminL2Norm<F>,
impl<O, L, P, G, H, F> Solver<O, IterState<P, G, (), H, (), F>> for NewtonCG<L, F>where
O: Gradient<Param = P, Gradient = G> + Hessian<Param = P, Hessian = H>,
P: Clone + ArgminSub<P, P> + ArgminDot<P, F> + ArgminScaledAdd<P, F, P> + ArgminMul<F, P> + ArgminConj + ArgminZeroLike,
G: ArgminL2Norm<F> + ArgminMul<F, P>,
H: Clone + ArgminDot<P, P>,
L: Clone + LineSearch<P, F> + Solver<O, IterState<P, G, (), (), (), F>>,
F: ArgminFloat + ArgminL2Norm<F>,
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), H, (), F>,
) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), H, (), F>, ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
Computes a single iteration of the algorithm and has access to the optimization problem
definition and the internal state of the solver.
Returns an updated
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn terminate(
&mut self,
state: &IterState<P, G, (), H, (), F>,
) -> TerminationStatus
fn terminate( &mut self, state: &IterState<P, G, (), H, (), F>, ) -> TerminationStatus
Used to implement stopping criteria, in particular criteria which are not covered by
(
terminate_internal
. Read moresource§fn init(
&mut self,
_problem: &mut Problem<O>,
state: I,
) -> Result<(I, Option<KV>), Error>
fn init( &mut self, _problem: &mut Problem<O>, state: I, ) -> Result<(I, Option<KV>), Error>
Initializes the algorithm. Read more
source§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
Checks whether basic termination reasons apply. Read more
Auto Trait Implementations§
impl<L, F> Freeze for NewtonCG<L, F>
impl<L, F> RefUnwindSafe for NewtonCG<L, F>where
L: RefUnwindSafe,
F: RefUnwindSafe,
impl<L, F> Send for NewtonCG<L, F>
impl<L, F> Sync for NewtonCG<L, F>
impl<L, F> Unpin for NewtonCG<L, F>
impl<L, F> UnwindSafe for NewtonCG<L, F>where
L: UnwindSafe,
F: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
🔬This is a nightly-only experimental API. (
clone_to_uninit
)§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.