Struct argmin::solver::quasinewton::DFP
source · pub struct DFP<L, F> { /* private fields */ }
Expand description
§Davidon-Fletcher-Powell (DFP) method
The Davidon-Fletcher-Powell algorithm (DFP) is a method for solving unconstrained nonlinear optimization problems.
The algorithm requires a line search which is provided via the constructor. Additionally an
initial guess for the parameter vector and an initial inverse Hessian is required, which are to
be provided via the configure
method of the
Executor
(See IterState
, in particular IterState::param
and IterState::inv_hessian
).
In the same way the initial gradient and cost function corresponding to the initial parameter
vector can be provided. If these are not provided, they will be computed during initialization
of the algorithm.
A tolerance on the gradient can be configured with
with_tolerance_grad
: If the norm of the gradient is below
said tolerance, the algorithm stops. It defaults to sqrt(EPSILON)
.
§Requirements on the optimization problem
The optimization problem is required to implement CostFunction
and Gradient
.
§Reference
Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.
Implementations§
source§impl<L, F> DFP<L, F>where
F: ArgminFloat,
impl<L, F> DFP<L, F>where
F: ArgminFloat,
sourcepub fn with_tolerance_grad(self, tol_grad: F) -> Result<Self, Error>
pub fn with_tolerance_grad(self, tol_grad: F) -> Result<Self, Error>
The algorithm stops if the norm of the gradient is below tol_grad
.
The provided value must be non-negative. Defaults to sqrt(EPSILON)
.
§Example
let dfp: DFP<_, f64> = DFP::new(linesearch).with_tolerance_grad(1e-6)?;
Trait Implementations§
source§impl<'de, L, F> Deserialize<'de> for DFP<L, F>where
L: Deserialize<'de>,
F: Deserialize<'de>,
impl<'de, L, F> Deserialize<'de> for DFP<L, F>where
L: Deserialize<'de>,
F: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
source§impl<O, L, P, G, H, F> Solver<O, IterState<P, G, (), H, (), F>> for DFP<L, F>where
O: CostFunction<Param = P, Output = F> + Gradient<Param = P, Gradient = G>,
P: Clone + ArgminSub<P, P> + ArgminDot<G, F> + ArgminDot<P, H> + ArgminMul<F, P>,
G: Clone + ArgminSub<G, G> + ArgminL2Norm<F> + ArgminDot<P, F>,
H: Clone + ArgminSub<H, H> + ArgminDot<G, P> + ArgminAdd<H, H> + ArgminMul<F, H>,
L: Clone + LineSearch<P, F> + Solver<O, IterState<P, G, (), (), (), F>>,
F: ArgminFloat,
impl<O, L, P, G, H, F> Solver<O, IterState<P, G, (), H, (), F>> for DFP<L, F>where
O: CostFunction<Param = P, Output = F> + Gradient<Param = P, Gradient = G>,
P: Clone + ArgminSub<P, P> + ArgminDot<G, F> + ArgminDot<P, H> + ArgminMul<F, P>,
G: Clone + ArgminSub<G, G> + ArgminL2Norm<F> + ArgminDot<P, F>,
H: Clone + ArgminSub<H, H> + ArgminDot<G, P> + ArgminAdd<H, H> + ArgminMul<F, H>,
L: Clone + LineSearch<P, F> + Solver<O, IterState<P, G, (), (), (), F>>,
F: ArgminFloat,
source§fn init(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), H, (), F>,
) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
fn init( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), H, (), F>, ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), H, (), F>,
) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), H, (), F>, ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn terminate(
&mut self,
state: &IterState<P, G, (), H, (), F>,
) -> TerminationStatus
fn terminate( &mut self, state: &IterState<P, G, (), H, (), F>, ) -> TerminationStatus
terminate_internal
. Read moresource§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
Auto Trait Implementations§
impl<L, F> Freeze for DFP<L, F>
impl<L, F> RefUnwindSafe for DFP<L, F>where
L: RefUnwindSafe,
F: RefUnwindSafe,
impl<L, F> Send for DFP<L, F>
impl<L, F> Sync for DFP<L, F>
impl<L, F> Unpin for DFP<L, F>
impl<L, F> UnwindSafe for DFP<L, F>where
L: UnwindSafe,
F: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.