Struct argmin::solver::quasinewton::SR1

source ·
pub struct SR1<L, F> { /* private fields */ }
Expand description

§Symmetric rank-one (SR1) method

This method currently has problems: https://github.com/argmin-rs/argmin/issues/221.

§Requirements on the optimization problem

The optimization problem is required to implement CostFunction and Gradient.

§Reference

Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.

Implementations§

source§

impl<L, F> SR1<L, F>
where F: ArgminFloat,

source

pub fn new(linesearch: L) -> Self

Construct a new instance of SR1

§Example
let sr1: SR1<_, f64> = SR1::new(linesearch);
source

pub fn with_denominator_factor( self, denominator_factor: F, ) -> Result<Self, Error>

Set denominator factor

If the denominator of the update is below the denominator_factor (scaled with other factors derived from the parameter vectors and the gradients), then the update of the inverse Hessian will be skipped.

Must be in (0, 1) and defaults to 1e-8.

§Example
let sr1: SR1<_, f64> = SR1::new(linesearch).with_denominator_factor(1e-7)?;
source

pub fn with_tolerance_grad(self, tol_grad: F) -> Result<Self, Error>

The algorithm stops if the norm of the gradient is below tol_grad.

The provided value must be non-negative. Defaults to sqrt(EPSILON).

§Example
let sr1: SR1<_, f64> = SR1::new(linesearch).with_tolerance_grad(1e-6)?;
source

pub fn with_tolerance_cost(self, tol_cost: F) -> Result<Self, Error>

Sets tolerance for the stopping criterion based on the change of the cost stopping criterion

The provided value must be non-negative. Defaults to EPSILON.

§Example
let sr1: SR1<_, f64> = SR1::new(linesearch).with_tolerance_cost(1e-6)?;

Trait Implementations§

source§

impl<L: Clone, F: Clone> Clone for SR1<L, F>

source§

fn clone(&self) -> SR1<L, F>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<'de, L, F> Deserialize<'de> for SR1<L, F>
where L: Deserialize<'de>, F: Deserialize<'de>,

source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl<L, F> Serialize for SR1<L, F>
where L: Serialize, F: Serialize,

source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl<O, L, P, G, H, F> Solver<O, IterState<P, G, (), H, (), F>> for SR1<L, F>
where O: CostFunction<Param = P, Output = F> + Gradient<Param = P, Gradient = G>, P: Clone + ArgminSub<P, P> + ArgminDot<G, F> + ArgminDot<P, F> + ArgminDot<P, H> + ArgminL2Norm<F> + ArgminMul<F, P>, G: Clone + ArgminSub<P, P> + ArgminL2Norm<F> + ArgminSub<G, G>, H: ArgminDot<G, P> + ArgminDot<P, P> + ArgminAdd<H, H> + ArgminMul<F, H>, L: Clone + LineSearch<P, F> + Solver<O, IterState<P, G, (), (), (), F>>, F: ArgminFloat,

source§

fn name(&self) -> &str

Name of the solver. Mainly used in Observers.
source§

fn init( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), H, (), F>, ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>

Initializes the algorithm. Read more
source§

fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), H, (), F>, ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>

Computes a single iteration of the algorithm and has access to the optimization problem definition and the internal state of the solver. Returns an updated state and optionally a KV which holds key-value pairs used in Observers.
source§

fn terminate( &mut self, state: &IterState<P, G, (), H, (), F>, ) -> TerminationStatus

Used to implement stopping criteria, in particular criteria which are not covered by (terminate_internal. Read more
source§

fn terminate_internal(&mut self, state: &I) -> TerminationStatus

Checks whether basic termination reasons apply. Read more

Auto Trait Implementations§

§

impl<L, F> Freeze for SR1<L, F>
where F: Freeze, L: Freeze,

§

impl<L, F> RefUnwindSafe for SR1<L, F>

§

impl<L, F> Send for SR1<L, F>
where F: Send, L: Send,

§

impl<L, F> Sync for SR1<L, F>
where F: Sync, L: Sync,

§

impl<L, F> Unpin for SR1<L, F>
where F: Unpin, L: Unpin,

§

impl<L, F> UnwindSafe for SR1<L, F>
where F: UnwindSafe, L: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

source§

impl<T> SendAlias for T

source§

impl<T> SyncAlias for T