Struct argmin::solver::trustregion::Steihaug
source · pub struct Steihaug<P, F> { /* private fields */ }
Expand description
§Steihaug method
The Steihaug method is a conjugate gradients based approach for finding an approximate solution to the second order approximation of the cost function within the trust region.
§Reference
Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.
Implementations§
source§impl<P, F> Steihaug<P, F>
impl<P, F> Steihaug<P, F>
sourcepub fn with_epsilon(self, epsilon: F) -> Result<Self, Error>
pub fn with_epsilon(self, epsilon: F) -> Result<Self, Error>
Set epsilon
The algorithm stops when the residual is smaller than epsilon
.
Must be larger than 0 and defaults to 10^-10.
§Example
let sh: Steihaug<Vec<f64>, f64> = Steihaug::new().with_epsilon(10e-9)?;
sourcepub fn with_max_iters(self, iters: u64) -> Self
pub fn with_max_iters(self, iters: u64) -> Self
Set maximum number of iterations
The algorithm stops after iter
iterations.
Defaults to u64::MAX
.
§Example
let sh: Steihaug<Vec<f64>, f64> = Steihaug::new().with_max_iters(100);
Trait Implementations§
source§impl<'de, P, F> Deserialize<'de> for Steihaug<P, F>where
P: Deserialize<'de>,
F: Deserialize<'de>,
impl<'de, P, F> Deserialize<'de> for Steihaug<P, F>where
P: Deserialize<'de>,
F: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<P, O, F, H> Solver<O, IterState<P, P, (), H, (), F>> for Steihaug<P, F>where
P: Clone + ArgminMul<F, P> + ArgminL2Norm<F> + ArgminDot<P, F> + ArgminAdd<P, P> + ArgminZeroLike,
H: ArgminDot<P, P>,
F: ArgminFloat,
impl<P, O, F, H> Solver<O, IterState<P, P, (), H, (), F>> for Steihaug<P, F>where
P: Clone + ArgminMul<F, P> + ArgminL2Norm<F> + ArgminDot<P, F> + ArgminAdd<P, P> + ArgminZeroLike,
H: ArgminDot<P, P>,
F: ArgminFloat,
source§fn init(
&mut self,
_problem: &mut Problem<O>,
state: IterState<P, P, (), H, (), F>,
) -> Result<(IterState<P, P, (), H, (), F>, Option<KV>), Error>
fn init( &mut self, _problem: &mut Problem<O>, state: IterState<P, P, (), H, (), F>, ) -> Result<(IterState<P, P, (), H, (), F>, Option<KV>), Error>
Initializes the algorithm. Read more
source§fn next_iter(
&mut self,
_problem: &mut Problem<O>,
state: IterState<P, P, (), H, (), F>,
) -> Result<(IterState<P, P, (), H, (), F>, Option<KV>), Error>
fn next_iter( &mut self, _problem: &mut Problem<O>, state: IterState<P, P, (), H, (), F>, ) -> Result<(IterState<P, P, (), H, (), F>, Option<KV>), Error>
Computes a single iteration of the algorithm and has access to the optimization problem
definition and the internal state of the solver.
Returns an updated
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn terminate(
&mut self,
state: &IterState<P, P, (), H, (), F>,
) -> TerminationStatus
fn terminate( &mut self, state: &IterState<P, P, (), H, (), F>, ) -> TerminationStatus
Used to implement stopping criteria, in particular criteria which are not covered by
(
terminate_internal
. Read moresource§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
Checks whether basic termination reasons apply. Read more
source§impl<P, F: ArgminFloat> TrustRegionRadius<F> for Steihaug<P, F>
impl<P, F: ArgminFloat> TrustRegionRadius<F> for Steihaug<P, F>
source§fn set_radius(&mut self, radius: F)
fn set_radius(&mut self, radius: F)
Set current radius.
Needed by TrustRegion
.
§Example
use argmin::solver::trustregion::{Steihaug, TrustRegionRadius};
let mut sh: Steihaug<Vec<f64>, f64> = Steihaug::new();
sh.set_radius(0.8);
Auto Trait Implementations§
impl<P, F> Freeze for Steihaug<P, F>
impl<P, F> RefUnwindSafe for Steihaug<P, F>where
F: RefUnwindSafe,
P: RefUnwindSafe,
impl<P, F> Send for Steihaug<P, F>
impl<P, F> Sync for Steihaug<P, F>
impl<P, F> Unpin for Steihaug<P, F>
impl<P, F> UnwindSafe for Steihaug<P, F>where
F: UnwindSafe,
P: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
🔬This is a nightly-only experimental API. (
clone_to_uninit
)§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.