Struct argmin::solver::gaussnewton::GaussNewton
source · pub struct GaussNewton<F> { /* private fields */ }
Expand description
§Gauss-Newton method
The Gauss-Newton method is used to solve non-linear least squares problems.
Requires an initial parameter vector.
§Requirements on the optimization problem
The optimization problem is required to implement Operator
and Jacobian
.
§Reference
Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.
Implementations§
source§impl<F: ArgminFloat> GaussNewton<F>
impl<F: ArgminFloat> GaussNewton<F>
sourcepub fn new() -> Self
pub fn new() -> Self
Construct a new instance of GaussNewton
.
§Example
let gauss_newton: GaussNewton<f64> = GaussNewton::new();
sourcepub fn with_gamma(self, gamma: F) -> Result<Self, Error>
pub fn with_gamma(self, gamma: F) -> Result<Self, Error>
Set step width gamma.
Gamma must be within (0, 1]
. Defaults to 1.0
.
§Example
let gauss_newton = GaussNewton::new().with_gamma(0.5f64)?;
sourcepub fn with_tolerance(self, tol: F) -> Result<Self, Error>
pub fn with_tolerance(self, tol: F) -> Result<Self, Error>
Set tolerance for the stopping criterion based on cost difference.
Tolerance must be larger than zero and defaults to sqrt(EPSILON)
.
§Example
let gauss_newton = GaussNewton::new().with_tolerance(1e-4f64)?;
Trait Implementations§
source§impl<F: Clone> Clone for GaussNewton<F>
impl<F: Clone> Clone for GaussNewton<F>
source§fn clone(&self) -> GaussNewton<F>
fn clone(&self) -> GaussNewton<F>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<F: ArgminFloat> Default for GaussNewton<F>
impl<F: ArgminFloat> Default for GaussNewton<F>
source§fn default() -> GaussNewton<F>
fn default() -> GaussNewton<F>
Returns the “default value” for a type. Read more
source§impl<'de, F> Deserialize<'de> for GaussNewton<F>where
F: Deserialize<'de>,
impl<'de, F> Deserialize<'de> for GaussNewton<F>where
F: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<F> Serialize for GaussNewton<F>where
F: Serialize,
impl<F> Serialize for GaussNewton<F>where
F: Serialize,
source§impl<O, P, J, R, F> Solver<O, IterState<P, (), J, (), R, F>> for GaussNewton<F>where
O: Operator<Param = P, Output = R> + Jacobian<Param = P, Jacobian = J>,
P: Clone + ArgminSub<P, P> + ArgminMul<F, P>,
R: ArgminL2Norm<F>,
J: Clone + ArgminTranspose<J> + ArgminInv<J> + ArgminDot<J, J> + ArgminDot<R, P> + ArgminDot<P, P>,
F: ArgminFloat,
impl<O, P, J, R, F> Solver<O, IterState<P, (), J, (), R, F>> for GaussNewton<F>where
O: Operator<Param = P, Output = R> + Jacobian<Param = P, Jacobian = J>,
P: Clone + ArgminSub<P, P> + ArgminMul<F, P>,
R: ArgminL2Norm<F>,
J: Clone + ArgminTranspose<J> + ArgminInv<J> + ArgminDot<J, J> + ArgminDot<R, P> + ArgminDot<P, P>,
F: ArgminFloat,
source§fn init(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, (), J, (), R, F>,
) -> Result<(IterState<P, (), J, (), R, F>, Option<KV>), Error>
fn init( &mut self, problem: &mut Problem<O>, state: IterState<P, (), J, (), R, F>, ) -> Result<(IterState<P, (), J, (), R, F>, Option<KV>), Error>
Initializes the algorithm. Read more
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, (), J, (), R, F>,
) -> Result<(IterState<P, (), J, (), R, F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, (), J, (), R, F>, ) -> Result<(IterState<P, (), J, (), R, F>, Option<KV>), Error>
Computes a single iteration of the algorithm and has access to the optimization problem
definition and the internal state of the solver.
Returns an updated
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn terminate(
&mut self,
state: &IterState<P, (), J, (), R, F>,
) -> TerminationStatus
fn terminate( &mut self, state: &IterState<P, (), J, (), R, F>, ) -> TerminationStatus
Used to implement stopping criteria, in particular criteria which are not covered by
(
terminate_internal
. Read moresource§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
Checks whether basic termination reasons apply. Read more
Auto Trait Implementations§
impl<F> Freeze for GaussNewton<F>where
F: Freeze,
impl<F> RefUnwindSafe for GaussNewton<F>where
F: RefUnwindSafe,
impl<F> Send for GaussNewton<F>where
F: Send,
impl<F> Sync for GaussNewton<F>where
F: Sync,
impl<F> Unpin for GaussNewton<F>where
F: Unpin,
impl<F> UnwindSafe for GaussNewton<F>where
F: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.