Struct argmin::solver::trustregion::CauchyPoint
source · pub struct CauchyPoint<F> { /* private fields */ }
Expand description
§Cauchy point method
The Cauchy point is the minimum of the quadratic approximation of the cost function within the trust region along the direction given by the first derivative.
§Requirements on the optimization problem
The optimization problem is required to implement Gradient
and Hessian
.
§Reference
Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.
Implementations§
source§impl<F> CauchyPoint<F>where
F: ArgminFloat,
impl<F> CauchyPoint<F>where
F: ArgminFloat,
Trait Implementations§
source§impl<F: Clone> Clone for CauchyPoint<F>
impl<F: Clone> Clone for CauchyPoint<F>
source§fn clone(&self) -> CauchyPoint<F>
fn clone(&self) -> CauchyPoint<F>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<F: Debug> Debug for CauchyPoint<F>
impl<F: Debug> Debug for CauchyPoint<F>
source§impl<F: Default> Default for CauchyPoint<F>
impl<F: Default> Default for CauchyPoint<F>
source§fn default() -> CauchyPoint<F>
fn default() -> CauchyPoint<F>
Returns the “default value” for a type. Read more
source§impl<'de, F> Deserialize<'de> for CauchyPoint<F>where
F: Deserialize<'de>,
impl<'de, F> Deserialize<'de> for CauchyPoint<F>where
F: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<F: PartialEq> PartialEq for CauchyPoint<F>
impl<F: PartialEq> PartialEq for CauchyPoint<F>
source§fn eq(&self, other: &CauchyPoint<F>) -> bool
fn eq(&self, other: &CauchyPoint<F>) -> bool
This method tests for
self
and other
values to be equal, and is used
by ==
.source§impl<F: PartialOrd> PartialOrd for CauchyPoint<F>
impl<F: PartialOrd> PartialOrd for CauchyPoint<F>
source§fn partial_cmp(&self, other: &CauchyPoint<F>) -> Option<Ordering>
fn partial_cmp(&self, other: &CauchyPoint<F>) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self
and other
) and is used by the <=
operator. Read moresource§impl<F> Serialize for CauchyPoint<F>where
F: Serialize,
impl<F> Serialize for CauchyPoint<F>where
F: Serialize,
source§impl<O, F, P, G, H> Solver<O, IterState<P, G, (), H, (), F>> for CauchyPoint<F>where
O: Gradient<Param = P, Gradient = G> + Hessian<Param = P, Hessian = H>,
P: Clone + ArgminMul<F, P> + ArgminWeightedDot<P, F, H>,
G: ArgminMul<F, P> + ArgminWeightedDot<G, F, H> + ArgminL2Norm<F>,
F: ArgminFloat,
impl<O, F, P, G, H> Solver<O, IterState<P, G, (), H, (), F>> for CauchyPoint<F>where
O: Gradient<Param = P, Gradient = G> + Hessian<Param = P, Hessian = H>,
P: Clone + ArgminMul<F, P> + ArgminWeightedDot<P, F, H>,
G: ArgminMul<F, P> + ArgminWeightedDot<G, F, H> + ArgminL2Norm<F>,
F: ArgminFloat,
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), H, (), F>,
) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), H, (), F>, ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
Computes a single iteration of the algorithm and has access to the optimization problem
definition and the internal state of the solver.
Returns an updated
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn terminate(
&mut self,
state: &IterState<P, G, (), H, (), F>,
) -> TerminationStatus
fn terminate( &mut self, state: &IterState<P, G, (), H, (), F>, ) -> TerminationStatus
Used to implement stopping criteria, in particular criteria which are not covered by
(
terminate_internal
. Read moresource§fn init(
&mut self,
_problem: &mut Problem<O>,
state: I,
) -> Result<(I, Option<KV>), Error>
fn init( &mut self, _problem: &mut Problem<O>, state: I, ) -> Result<(I, Option<KV>), Error>
Initializes the algorithm. Read more
source§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
Checks whether basic termination reasons apply. Read more
source§impl<F> TrustRegionRadius<F> for CauchyPoint<F>where
F: ArgminFloat,
impl<F> TrustRegionRadius<F> for CauchyPoint<F>where
F: ArgminFloat,
source§fn set_radius(&mut self, radius: F)
fn set_radius(&mut self, radius: F)
Set current radius.
Needed by TrustRegion
.
§Example
use argmin::solver::trustregion::{CauchyPoint, TrustRegionRadius};
let mut cp: CauchyPoint<f64> = CauchyPoint::new();
cp.set_radius(0.8);
impl<F: Copy> Copy for CauchyPoint<F>
impl<F: Eq> Eq for CauchyPoint<F>
impl<F> StructuralPartialEq for CauchyPoint<F>
Auto Trait Implementations§
impl<F> Freeze for CauchyPoint<F>where
F: Freeze,
impl<F> RefUnwindSafe for CauchyPoint<F>where
F: RefUnwindSafe,
impl<F> Send for CauchyPoint<F>where
F: Send,
impl<F> Sync for CauchyPoint<F>where
F: Sync,
impl<F> Unpin for CauchyPoint<F>where
F: Unpin,
impl<F> UnwindSafe for CauchyPoint<F>where
F: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.